題目列表(包括答案和解析)
,當(dāng)時(shí),有,則應(yīng)滿足的關(guān)系一定是
A. B. C. D.下列一組命題:
①在區(qū)間內(nèi)任取兩個實(shí)數(shù),求事件“恒成立”的概率是
②從200個元素中抽取20個樣本,若采用系統(tǒng)抽樣的方法則應(yīng)分為10組,每組抽取2個
③函數(shù)關(guān)于(3,0)點(diǎn)對稱,滿足,且當(dāng)時(shí)函數(shù)為增函數(shù),則在上為減函數(shù)。
④命題“對任意,方程有實(shí)數(shù)解”的否定形式為“存在,方程無實(shí)數(shù)解”
以上命題中正確的是
下列一組命題:
①在區(qū)間內(nèi)任取兩個實(shí)數(shù),求事件“恒成立”的概率是;
②從200個元素中抽取20個樣本,若采用系統(tǒng)抽樣的方法則應(yīng)分為10組,每組抽取2個;
③函數(shù)關(guān)于(3,0)點(diǎn)對稱,滿足,且當(dāng)時(shí)函數(shù)為增函數(shù),則在上為減函數(shù);
④命題“對任意,方程有實(shí)數(shù)解”的否定形式為“存在,方程無實(shí)數(shù)解”。
以上命題中正確的是
某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測,如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù)()的圖象,且是常數(shù).
(1)寫出服藥后y與x的函數(shù)關(guān)系式;
(2)據(jù)測定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號表示)
(滿分16分)
某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測,如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù)()的圖象,且是常數(shù).
(1)寫出服藥后y與x的函數(shù)關(guān)系式;
(2)據(jù)測定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號表示)
一.選擇題
序號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
C
C
B
D
A
二填空題
13.; 14.-6 ; 15.; 16..
三.解答題
17.解:(Ⅰ)
………………………………………………………………4分
…………………………6分
(Ⅱ) …………………………………………………8分
∴ …………………………………………………………………………10分
………………………………………………………………………………12分
18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4.
∴=
.……………………………………………………………… 2分
則V=. ……………………………………………………………… 4分
(Ⅱ)∵PA=CA,F(xiàn)為PC的中點(diǎn),∴AF⊥PC. …………………………5分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.
∵E為PD中點(diǎn),F(xiàn)為PC中點(diǎn),∴EF∥CD.則EF⊥PC. …………………………7分
∵AF∩EF=F,∴PC⊥平面AEF.…………………………………………………………8分
(Ⅲ)以A為坐標(biāo)原點(diǎn),AD,AP所在直線分別為y軸,z軸,建立空間直角坐標(biāo)系,
則平面PAD的法向量為:=(1,0,0)
由(Ⅱ)知AF⊥PC,AF⊥CD ∴AF⊥平面PCD
∴為平面PCD的法向量.
∵P(0,0,2),C∴=
,即二面角C-PD-A的余弦值為…………12分
19.解:設(shè)第一個匣子里的三把鑰匙為A,B,C,第二個匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)
(Ⅰ)…………………………………………………………………………4分
(Ⅱ)(第一次只能拿B,第二次只能拿c) ……………………………6分
(第一次只能拿B,第二次只能拿b) ……………………………8分
(第一次拿A,第二次隨便拿,或第一次拿B,第二次拿a) …10分
…………………………12分
20.(Ⅰ)依題
即( …………………………………………………3分
故為等差數(shù)列,a1=1,d=2
………………………………………………………………………………………………5分
(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分
又成等差數(shù)列
………………………………………………………………………………………8分
或…………………………………………………………………………………10分
或……………………………………………………………………12分
21解:(Ⅰ)依題PN為AM的中垂線
…………………………………………………………2分
又C(-1,0),A(1,0)
所以N的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分
a=,c=1,所以為所求………………………………………………………5分
(Ⅱ)設(shè)直線的方程為:y=k(x-1)代入橢圓方程:x2+2y2=2得
(1+2k2)x2-4k2x+2k2-2=0………………(1)
設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個根.
…………………………………………………………7分
依題
………………………………………………………9分
解得:………………………………………………………………………12分
22.解:(Ⅰ)
若,則
即∴成等差數(shù)列……………………3分
(Ⅱ)依題意
∴切線
令得,即
∴切線過點(diǎn).……………………………………………………………………………8分
(Ⅲ),則
∴
①時(shí):
時(shí),,此時(shí)為增函數(shù);
時(shí),,此時(shí)為減函數(shù);
時(shí),,此時(shí)為增函數(shù).
而,依題意有 ………………10分
②時(shí):在時(shí),
∴ 即……(☆)
記,則
∴為R上的增函數(shù),而,∴時(shí),
恒成立,(☆)無解.
綜上,為所求.…………………………………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com