每一行從左到右.每一列從上到下增大.當3.4固定在圖中 的位置時.填寫空格的方法為A.6種 B.12種 C.18種 D.24種 查看更多

 

題目列表(包括答案和解析)

下列關(guān)于抽簽法和隨機數(shù)表法敘述錯誤的是


  1. A.
    抽簽法簡單易行,但是不適用總體容量非常大的情況
  2. B.
    對于總體和樣本的容量都比較大的情況,隨機數(shù)表法在操作上也有一定的困難
  3. C.
    由于隨機數(shù)表中每個數(shù)字的出現(xiàn)沒有規(guī)律,所以隨機數(shù)表法不能保證每個個體被抽到的可能性相等
  4. D.
    用隨機數(shù)表法進行抽樣時,對隨機數(shù)表的讀取順序也可以從右向左進行

查看答案和解析>>

下列關(guān)于抽簽法和隨機數(shù)表法敘述錯誤的是

[  ]
A.

抽簽法簡單易行,但是不適用總體容量非常大的情況

B.

對于總體和樣本的容量都比較大的情況,隨機數(shù)表法在操作上也有一定的困難

C.

由于隨機數(shù)表中每個數(shù)字的出現(xiàn)沒有規(guī)律,所以隨機數(shù)表法不能保證每個個體被抽到的可能性相等

D.

用隨機數(shù)表法進行抽樣時,對隨機數(shù)表的讀取順序也可以從右向左進行

查看答案和解析>>

如圖所示的表格中,每格填上一個數(shù)字后,使每一橫行成等差數(shù)列,每一縱列成等比數(shù)列.
第1列 第2列 第3列 第4列 第5列
第1行 1 2
第2行
1
2
1
第3行 a
第4行 b
第5行 c
(1)求b+c-a的值;
(2)設(shè)第3列數(shù)從上到下形成的數(shù)列是{an},第3行數(shù)從左到右形成的數(shù)列是{bn},求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

如圖所示的表格中,每格填上一個數(shù)字后,使每一橫行成等差數(shù)列,每一縱列成等比數(shù)列.
第1列第2列第3列第4列第5列
第1行12
第2行數(shù)學公式1
第3行a
第4行b
第5行c
(1)求b+c-a的值;
(2)設(shè)第3列數(shù)從上到下形成的數(shù)列是{an},第3行數(shù)從左到右形成的數(shù)列是{bn},求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

如圖所示的表格中,每格填上一個數(shù)字后,使每一橫行成等差數(shù)列,每一縱列成等比數(shù)列.
第1列 第2列 第3列 第4列 第5列
第1行 1 2
第2行
1
2
1
第3行 a
第4行 b
第5行 c
(1)求b+c-a的值;
(2)設(shè)第3列數(shù)從上到下形成的數(shù)列是{an},第3行數(shù)從左到右形成的數(shù)列是{bn},求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

C

C

D

D

A

C

二、填空題

13.          14.                     15.4            16.③④

三、解答題

17.解:(1),

                                                                         (2分)

              又                                                      (4分)

              .                                                                            (6分)

       (2)

                                                                    (8分)

             

                                        (10分)

18.(1)證明:連結(jié)于點,取的中點,連結(jié),則//       依題意,知,

,且,

故四邊形是平行四邊形,

,即      (3分)

              又平面,平面

              平面,                (6分)

       (2)解:處長的處長線于點,連結(jié),作,連結(jié)

∵平面平面,平面平面

平面

由三垂線定理,知,故就是三面角的平面角.(8分)

∵平面平面,平面平面

平面,故就是直線與平面成的角,   (10分)

              知設(shè),則

              在直三角形中:

              在直角三角形中:

              故三而角的大小為60°.                                                 (12分)

19.解:(1)記表示事無償援助,“取出的2件產(chǎn)品中無二等品”,

表示事件“取出的2件產(chǎn)品中恰有1件是二等品”。則、互斥,且

依題意,知,得                                      (6分)

       (2)(理)可能的取值為0,1,2,

              若該批產(chǎn)品共100件,由(1)知,其中共有二等品100×0.2=20件,故

              (9分)

0

1

2

              所以的分布列為

             

 

 

的期望                  (12分)

20.解:(1)上單調(diào)遞增,上單調(diào)遞減,

              有兩根,2,

                                   (4分)

              今

              因為上恒大于0,

所以上單調(diào)遞增,故

                                                                    (6分)

       (2)

                                                                                   (8分)

           ①當時,,定義域為

              恒成立,上單調(diào)遞增;                    (9分)

           ②當時,,定義域:

        恒成立,上單調(diào)遞增;             (10分)

           ③當時,  ,定義域:

              由,由

              故在上單調(diào)遞增;在上單調(diào)遞減.                      (11分)

              所以當時,上單調(diào)遞增,故無極值;

              當時,上單增;故無極值.

              當時,上單調(diào)遞增;在上單調(diào)遞減.

              故有極小值,且的極小值.        (12分)

 

21.解:(1)設(shè)依題意得

                                                                            (2分)

              消去,,整理得.                                                       (4分)

              當時,方程表示焦點在軸上的橢圓;

              當時,方程表示焦點在軸上的橢圓;

              當時,方程表示圓.                                                                       (6分)

       (2)當時,方程為設(shè)直線的方程為

                                                                                                 (8分)

              消去                                (10分)

              根據(jù)已知可得,故有

              直線的斜率為                                                           (12分)

22.證明:(1)即證

             

                                                                                                        (2分)

              假設(shè)

                                                     (4分)

             

             

              綜上所述,根據(jù)數(shù)學歸納法,命題成立                                                     (6分)

       (2)由(1),得

                                       (8分)

                          (10分)

              又                       (12分)

 

 

 

 


同步練習冊答案