已知,求矩陣B.選修4――4:坐標(biāo)系與凡屬方程 查看更多

 

題目列表(包括答案和解析)

(1)(本小題滿分7分) 選修4一2:矩陣與變換
若點(diǎn)A(2,2)在矩陣對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
(2)(本小題滿分7分) 選修4一4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1與曲線C2(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
(3)(本小題滿分7分) 選修4一5:不等式選講
求證:,.

查看答案和解析>>

(1)(本小題滿分7分) 選修4一2:矩陣與變換

   若點(diǎn)A(2,2)在矩陣對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.

    (2)(本小題滿分7分) 選修4一4:坐標(biāo)系與參數(shù)方程

    已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1:與曲線C2(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.

    (3)(本小題滿分7分) 選修4一5:不等式選講

   求證:,.

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

查看答案和解析>>

(1)(本小題滿分7分) 選修4一2:矩陣與變換
若點(diǎn)A(2,2)在矩陣對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
(2)(本小題滿分7分) 選修4一4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1與曲線C2(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
(3)(本小題滿分7分) 選修4一5:不等式選講
求證:,.

查看答案和解析>>

本小題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知是矩陣屬于特征值λ1=2的一個(gè)特征向量.
(I)求矩陣M;
(Ⅱ)若,求M10a.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,A(l,0),B(2,0)是兩個(gè)定點(diǎn),曲線C的參數(shù)方程為為參數(shù)).
(I)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(l,0為極點(diǎn),||為長(zhǎng)度單位,射線AB為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
(3)選修4-5:不等式選講
(I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|(zhì)y|,求的最小值.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

查看答案和解析>>

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是;
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)答案中,只有一個(gè)項(xiàng)是符合題目要求的,把正確的代號(hào)填在答題卡指定的位置上。

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

D

C

A

A

A

D

B

D

C

二、填空題:本大題共5小題,每小題4分,共20分,把答案填在答題卡的相應(yīng)位置。

11.-1或             12.               13.0.32    

14.                  15.100100   

 

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟,在答題卡上相應(yīng)題目的答題區(qū)域內(nèi)作答。

16. (本小題滿分13分)

解:

  

兩邊平方并整理得

    

根據(jù)余弦定理得

 

17. (本小題滿分13分)

解法一:

(Ⅰ)由俯視圖可得:

           有俯視圖知

           

是以B為直角頂點(diǎn)的直角三角形。

(Ⅱ)三角形PAC的面積為

俯視圖是底邊長(zhǎng)為,斜邊上的高為的等腰直角三角形

三角形PAB的面積為,且PB=

由(Ⅰ)知三角形PBC是直角三角形,故其面積為

故三棱錐P-ABC的全面積為

(Ⅲ)在面ABC內(nèi)過A做AC的垂線AQ,

以A為原點(diǎn),AC、AQ、AP所在直線分別為x軸、y軸 、z軸建立空間直角坐標(biāo)系,如圖所示

設(shè)為面PAB的一個(gè)法向量

設(shè)

故當(dāng)E為PC的中點(diǎn)時(shí),AE與面PAB所成的為600

 

解法二:

(Ⅰ)由正視圖和俯視圖可判斷

在面ABC內(nèi)過A做AC的垂線AQ

以A為原點(diǎn),AC、AQ、AP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,如圖所示

是以B為直角頂點(diǎn)的直角三角形。

(Ⅱ)同解法一。

(Ⅲ)設(shè)為面PAB的一個(gè)法向量

故當(dāng)E為PC的中點(diǎn)時(shí),AE與面PAB所成的為600

 

18. (本小題滿分13分)

解:

(Ⅰ)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件A

因?yàn)閺?組數(shù)據(jù)中選取2組數(shù)據(jù)共有中情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種

所以

(Ⅱ)由數(shù)據(jù)求得

由公式求得

再由

所以y關(guān)于x的線性回歸方程為

(Ⅲ)當(dāng)時(shí),

同樣,當(dāng)時(shí),

所以,該小組所得線性回歸方程是理想的。

 

19. (本小題滿分13分)‘

   解:(Ⅰ)設(shè)橢圓方程為

    ①

點(diǎn)A(1,1)在橢圓上,    ②

    ③

故所求橢圓方程為

(Ⅱ)由A(1,1)得C(-1,1)

易知AP的斜率k必存在,設(shè)AP;

由A(1,1)得的一個(gè)根

由韋達(dá)定理得:

以-k代k得

即存在實(shí)數(shù)

20. (本小題滿分14分)

解:(Ⅰ)

當(dāng)時(shí),

當(dāng)時(shí),

連續(xù),故

(Ⅱ)即不等式在區(qū)間有解

可化為

在區(qū)間有解

在區(qū)間遞減,在區(qū)間遞增

所以,實(shí)數(shù)a的取值范圍為

(Ⅲ)設(shè)存在公差為d首項(xiàng)等于的等差數(shù)列

和公比q大于0的等比數(shù)列,使得數(shù)列的前n項(xiàng)和等于

 

   ①

  ②

②-①×2得

(舍去)

       故

此時(shí),數(shù)列的的前n項(xiàng)和等于

故存在滿足題意的等差數(shù)列金額等比數(shù)列,使得數(shù)列的前n項(xiàng)和等于

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21. 本題有(1)、(2)、(3)三個(gè)小題,每題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分

(1)(本小題滿分7分)選修4――2:矩陣與變換

解一:

設(shè)

解二:

設(shè) 

(2)(本小題滿分7分)選修4――4:坐標(biāo)系與凡屬方程

解:曲線C1可化為:

曲線C2可化為

聯(lián)立  解得交點(diǎn)為

(3)(本小題滿分7分)選修4――5:不等式選講

解:

當(dāng)且僅當(dāng)

取最小值,最小值為

 

 

 


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�