查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標(biāo)為
(2,2)

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個答案中,只有一個項是符合題目要求的,把正確的代號填在答題卡指定的位置上。

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

C

A

A

A

D

B

D

C

二、填空題:本大題共5小題,每小題4分,共20分,把答案填在答題卡的相應(yīng)位置。

11.-1或             12.               13.0.32    

14.                  15.100100   

 

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟,在答題卡上相應(yīng)題目的答題區(qū)域內(nèi)作答。

16. (本小題滿分13分)

解:

  

兩邊平方并整理得

    

根據(jù)余弦定理得

 

17. (本小題滿分13分)

解法一:

(Ⅰ)由俯視圖可得:

           有俯視圖知

           

是以B為直角頂點的直角三角形。

(Ⅱ)三角形PAC的面積為

俯視圖是底邊長為,斜邊上的高為的等腰直角三角形

三角形PAB的面積為,且PB=

由(Ⅰ)知三角形PBC是直角三角形,故其面積為

故三棱錐P-ABC的全面積為

(Ⅲ)在面ABC內(nèi)過A做AC的垂線AQ,

以A為原點,AC、AQ、AP所在直線分別為x軸、y軸 、z軸建立空間直角坐標(biāo)系,如圖所示

設(shè)為面PAB的一個法向量

設(shè)

故當(dāng)E為PC的中點時,AE與面PAB所成的為600

 

解法二:

(Ⅰ)由正視圖和俯視圖可判斷

在面ABC內(nèi)過A做AC的垂線AQ

以A為原點,AC、AQ、AP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,如圖所示

是以B為直角頂點的直角三角形。

(Ⅱ)同解法一。

(Ⅲ)設(shè)為面PAB的一個法向量

故當(dāng)E為PC的中點時,AE與面PAB所成的為600

 

18. (本小題滿分13分)

解:

(Ⅰ)設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件A

因為從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有中情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個月的數(shù)據(jù)的情況有5種

所以

(Ⅱ)由數(shù)據(jù)求得

由公式求得

再由

所以y關(guān)于x的線性回歸方程為

(Ⅲ)當(dāng)時,

同樣,當(dāng)時,

所以,該小組所得線性回歸方程是理想的。

 

19. (本小題滿分13分)‘

   解:(Ⅰ)設(shè)橢圓方程為

    ①

點A(1,1)在橢圓上,    ②

    ③

故所求橢圓方程為

(Ⅱ)由A(1,1)得C(-1,1)

易知AP的斜率k必存在,設(shè)AP;

由A(1,1)得的一個根

由韋達定理得:

以-k代k得

即存在實數(shù)

20. (本小題滿分14分)

解:(Ⅰ)

當(dāng)時,

當(dāng)時,

連續(xù),故

(Ⅱ)即不等式在區(qū)間有解

可化為

在區(qū)間有解

在區(qū)間遞減,在區(qū)間遞增

所以,實數(shù)a的取值范圍為

(Ⅲ)設(shè)存在公差為d首項等于的等差數(shù)列

和公比q大于0的等比數(shù)列,使得數(shù)列的前n項和等于

 

   ①

  ②

②-①×2得

(舍去)

       故

此時,數(shù)列的的前n項和等于

故存在滿足題意的等差數(shù)列金額等比數(shù)列,使得數(shù)列的前n項和等于

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21. 本題有(1)、(2)、(3)三個小題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分

(1)(本小題滿分7分)選修4――2:矩陣與變換

解一:

設(shè)

解二:

設(shè) 

(2)(本小題滿分7分)選修4――4:坐標(biāo)系與凡屬方程

解:曲線C1可化為:

曲線C2可化為

聯(lián)立  解得交點為

(3)(本小題滿分7分)選修4――5:不等式選講

解:

當(dāng)且僅當(dāng)

取最小值,最小值為

 

 

 


同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倿骞夊☉銏犵缂備焦岣块崢閬嶆⒑闂堟稓澧曢柟鍐查叄椤㈡棃顢橀姀锛勫幐闁诲繒鍋犻褔鍩€椤掍胶绠撻柣锝囧厴椤㈡洟鏁冮埀顒€鏁梻浣瑰濡焦鎱ㄩ妶澶嬪剨閹肩补妾ч弨浠嬫煟閹邦剚鈻曢柛銈囧枎閳规垿顢欓悙顒佹瘓闂佺娅曠换鍐Χ閿濆绀冮柕濞у啫绠i梻鍌欒兌閹虫捇顢氶銏犵;婵炴垶姘ㄦ稉宥夋煟濡偐甯涢柍閿嬪灩缁辨帞鈧綆浜滈惃锟犳煛閳ь剛绱掑Ο闀愮盎闂侀潧枪閸庢煡藟閵忊槅娈介柣鎰皺婢э箑鈹戦埄鍐憙妞わ富鍣i弻娑氣偓锝庡亝瀹曞本淇婇銏犳殭闁宠棄顦埢搴ょ疀閺冣偓閻eジ姊虹拠鍙夊攭妞ゎ偄顦叅闁哄诞灞芥闂佸壊鍋呭ú鏍不閻愮儤鐓忓┑鐐茬仢閸斿瓨绻涢幘鎰佺吋闁诡喖缍婂畷鍫曨敂閸曨厼顦╁┑鐘灱椤煤閻斿娼栫紓浣股戞刊鎾煣韫囨洘鍤€缂佹せ鍓濈换娑㈠箻鐎靛壊鏆″銈冨妼閿曘倝鎮鹃悜钘夌骇閹煎瓨鎸婚~宥呪攽椤旂煫顏囥亹婢跺瞼绠斿璺号堥弨浠嬫煟閹邦厽缍戦柣蹇ョ畵閹筹綁濡堕崱鏇犵畾闂佸湱绮敮鐐存櫠濞戞氨纾肩紓浣贯缚濞插鈧娲栧畷顒冪亽闂佸憡绻傜€氬嘲岣块弮鈧穱濠囨倷椤忓嫧鍋撻弴鐘冲床闁圭儤顨呯粣妤呮煛瀹擃喖鏈紞搴g磽閸屾瑧鍔嶉拑鍗炩攽椤栨稒灏﹂柡灞诲€濋獮渚€骞掗幋婵喰戦梻渚€娼уΛ妤呮晝椤忓嫷娼栨繛宸簼椤ュ牓鏌嶉崫鍕殶閼叉牜绱撻崒娆掑厡濠殿喚鏁婚獮鎴﹀炊椤掍礁浠掑銈嗘濞夋洟鎮块埀顒€鈹戦悙鏉戠仸闁荤噦绠戦埢宥夊閵堝棌鎷洪柣鐘充航閸斿苯鈻嶉幇鐗堢厵闁告垯鍊栫€氾拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘挸绀夐柕鍫濇川绾剧晫鈧箍鍎遍幏鎴︾叕椤掑倵鍋撳▓鍨灈妞ゎ厾鍏橀獮鍐閵堝懐顦ч柣蹇撶箲閻楁鈧矮绮欏铏规嫚閺屻儱寮板┑鐐板尃閸曨厾褰炬繝鐢靛Т娴硷綁鏁愭径妯绘櫓闂佸憡鎸嗛崪鍐簥闂傚倷鑳剁划顖炲礉閿曞倸绀堟繛鍡樺灩閻棝鏌涢幇銊︽澓濞存粍绮撻弻锟犲炊瑜庨ˉ婊勭箾鐏炲倸鈧繈骞冮垾鎰佹建闁逞屽墴瀵鎮㈤崨濠勭Ф婵°倧绲介崯顖烆敁瀹ュ鈷戠紒瀣儥閸庢劙鏌涢弮鈧悷鈺侇嚕鐠囨祴妲堟俊顖炴敱閻庡妫呴銏$カ缂佽尙鍋撻弲銉╂⒒閸屾瑦绁版い鏇熺墵瀹曟澘螖閸涱喖浠悷婊冪箰鍗遍柟鐗堟緲缁犲鎮楀☉娅亪顢撻幘缁樷拺闁告稑锕︾粻鎾绘倵濮樺崬鍘撮柛鈹惧亾濡炪倖宸婚崑鎾绘煟椤撶偛鈧灝顕g拠娴嬫闁靛繒濮堥埡鍛厪濠㈣鍨伴崯浼村储娴犲鐓熼幖娣焺閸熷繘鏌涢悩宕囧⒌闁炽儻绠撻弻銊р偓锝傛櫇缁犳岸姊鸿ぐ鎺擄紵缂佲偓娓氣偓閹€斥槈閵忥紕鍘遍柣蹇曞仜婢т粙鎮¢婊呯<闁靛ǹ鍊楅惌娆愭叏婵犲嫮甯涢柟宄版嚇瀹曘劑妫冨☉姘毙ㄩ悗娈垮枤閺佸銆佸Δ鍛<婵犲﹤鎳愰崢顖炴⒒娴d警鏀伴柟娲讳簽閳ь剟娼ч惌鍌氼嚕椤愶箑纾奸柣鎰嚟閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷