16.若ㄏy-2xㄏ= x2,其中-1<x<0,則實(shí)數(shù)y的取值范圍是 .查看更多

 

題目列表(包括答案和解析)

設(shè)集合A={x|y=log2(x-1)},集合B={y|y=-x2+2x-2,x∈R},集合C={x|x2-(m-1)x+2m=0};
(1)求集合A,B;
(2)若A∩C≠,且B∩C≠,求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)m使得(A∪B)∩=成立,若存在,求實(shí)數(shù)的取值范圍;若不存在,請說明理由。

查看答案和解析>>

給出如下兩個(gè)命題:命題A:函數(shù)y=(a-1)x為增函數(shù). 命題B:不等式x2+(a+1)x+4≤0(a∈R)的解集為∅. 若命題“A或B”為真命題,而命題“A且B”為假命題,則實(shí)數(shù)a的取值范圍是( �。�

查看答案和解析>>

給出如下兩個(gè)命題:命題A:函數(shù)y=(a-1)x為增函數(shù);命題B:方程x2+(a+1)x+4=0(a∈R)有虛根.若A與B中有且僅有一個(gè)是真命題,則實(shí)數(shù)a的取值范圍是
(-5,1]∪[3,+∞)
(-5,1]∪[3,+∞)

查看答案和解析>>

已知命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;命題q:函數(shù)y=(2a2-a)x為增函數(shù),若p∧q為真命題,則實(shí)數(shù)a的取值范圍是
a<-1或a>1
a<-1或a>1

查看答案和解析>>

一.  ADBCA  CABBA  BC

二.   13.3;      14.(-∞,4];      15. ;        16. .

三.

17. 解:解:由,得  …3分

 

                                    ………………6分                 

  =   �!�10分

18. 解:(I)分別記“客人游覽甲景點(diǎn)”,“客人游覽乙景點(diǎn)”,“客人游覽丙景點(diǎn)”為事件A1,A2,A3.由已知A1,A2,A3相互獨(dú)立,P(A1)= 0.4,P(A2)= 0.5,P(A3)= 0.6.

P(ξ= 3)= P(A1?A2?A3)+P(A1?A2?A3)

= P(A1)P(A2)P(A3)+P(A1)P(A2)P(A3))

= 2×0.4×0.5×0.6= 0.24.4分………………7分  

(Ⅱ)客人游覽的景點(diǎn)數(shù)的可能取值為0,1,2,3.相應(yīng)地,客人沒有游覽的景點(diǎn)數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.∴P(ξ= 1)= 1-0.24= 0.76. ………12分

 

 

19、解:解法一:(Ⅰ)取中點(diǎn),連結(jié)

為正三角形,

正三棱柱中,平面平面

平面

連結(jié),在正方形中,分別為

的中點(diǎn),

,

.………………………………….3分

在正方形中,,

 

平面.………………………………….5分

(Ⅱ)設(shè)交于點(diǎn),在平面中,作,連結(jié),由(Ⅰ)得平面

,

為二面角的平面角.………………………………….9分

中,由等面積法可求得,

所以二面角的正弦值.………………………………….12分

解法二:(Ⅰ)取中點(diǎn),連結(jié)

為正三角形,.$

平面

中點(diǎn),以為原點(diǎn),,的方向?yàn)?sub>軸的正方向建立空間直角坐標(biāo)系,則,,,…….3分

,,

,

,

平面.………………………………….6分

(Ⅱ)設(shè)平面的法向量為

,

為平面的一個(gè)法向量.…………………………9分

由(Ⅰ)知平面,

為平面的法向量.

,

二面角的正弦值…………………………12

20. 解:(1)由已知得解得

設(shè)數(shù)列的公比為,由,可得

,可知,

, 解得

由題意得. 故數(shù)列的通項(xiàng)為.…………6

(2)由于

    由(1)得   又          是等差數(shù)列.

==

.…………………………12

 

21.解:解:(Ⅰ)由題意知f′(x)= ax2+bx-a2,且f′(x)= 0的兩根為x1、x2.

∴x1+x2= -  x1x2= -a.

∴(x2-x1)2= (x2+x1)2-4x1x2= 4.

∴()2+4a= 4.

∴b2= (4-4a)a2. …………………………6分

(Ⅱ)由(1)知b2= (4-4a)a2≥0,且0<a≤1

令函數(shù)g(a)= (4-4a)a2= -4a3+4a2(0<a≤1)

g′(a)= -12a2+8a8a(1-a)

令g'(a)= 0  ∴a1= 0,a2= .

函數(shù)g(a)在(0,)上為增函數(shù),(,1)上為減函數(shù).

∴g(a)max= g()= .

∴b2≤.

∴|b|≤.…………………………12分

 

22.解:(Ⅰ)由雙曲線的定義可知,曲線是以為焦點(diǎn)的雙曲線的左支,且,易知

故曲線的方程為…………………………3

設(shè),由題意建立方程組

消去,得

又已知直線與雙曲線左支交于兩點(diǎn),有

       解得………………5

依題意得

整理后得

   ∴

故直線的方程為…………………………8

設(shè),由已知,得

,

,

∴點(diǎn)

將點(diǎn)的坐標(biāo)代入曲線的方程,得,

但當(dāng)時(shí),所得的點(diǎn)在雙曲線的右支上,不合題意

.…………………………10

點(diǎn)的坐標(biāo)為

的距離為

的面積…………………………12

 

 

 


同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�