題目列表(包括答案和解析)
數(shù)列首項,前項和滿足等式(常數(shù),……)
(1)求證:為等比數(shù)列;
(2)設數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項公式.
(3)設,求數(shù)列的前項和.
【解析】第一問利用由得
兩式相減得
故時,
從而又 即,而
從而 故
第二問中, 又故為等比數(shù)列,通項公式為
第三問中,
兩邊同乘以
利用錯位相減法得到和。
(1)由得
兩式相減得
故時,
從而 ………………3分
又 即,而
從而 故
對任意,為常數(shù),即為等比數(shù)列………………5分
(2) ……………………7分
又故為等比數(shù)列,通項公式為………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分
【解析】第一問中設為曲線上的任意一點,則點在圓上,
∴,曲線的方程為
第二問中,設點的坐標為,直線的方程為, ………………3分
代入曲線的方程,可得
∵,∴
確定結論直線與曲線總有兩個公共點.
然后設點,的坐標分別, ,則,
要使被軸平分,只要得到。
(1)設為曲線上的任意一點,則點在圓上,
∴,曲線的方程為. ………………2分
(2)設點的坐標為,直線的方程為, ………………3分
代入曲線的方程,可得 ,……5分
∵,∴,
∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結論)
………………6分
設點,的坐標分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當時,(*)對任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點,使得總能被軸平分
A、47.5% | B、60% | C、27% | D、36% |
y 社區(qū)數(shù)量 x |
居民素質(zhì) | |||||
1分 | 2分 | 3分 | 4分 | 5分 | ||
社 區(qū) 服 務 |
1分 | 1 | 3 | 1 | 0 | 1 |
2分 | 1 | 0 | 7 | 5 | 1 | |
3分 | 2 | 1 | 0 | 9 | 3 | |
4分 | a | b | 6 | 0 | 1 | |
5分 | 0 | 0 | 1 | 1 | 3 |
167 |
50 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com