題目列表(包括答案和解析)
x2 |
m |
y2 |
8 |
|
x2 |
m |
y2 |
8 |
|
A.(0,4] | B.[4,+∞) | C.(0,2] | D.[2,+∞) |
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點(,0),所以=,得.又因為m>1,所以,故直線的方程為
第二問中設,由,消去x,得,
則由,知<8,且有
由題意知O為的中點.由可知從而,設M是GH的中點,則M().
由題意可知,2|MO|<|GH|,得到范圍
過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com