題目列表(包括答案和解析)
為了解某班關(guān)注NBA是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
| 關(guān)注NBA | 不關(guān)注NBA | 合計 |
男生 | | 6 | |
女生 | 10 | | |
合計 | | | 48 |
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
K | 2.706 | 3.841 | 60635 | 7.879 |
為了解某班關(guān)注NBA是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
| 關(guān)注NBA | 不關(guān)注NBA | 合計 |
男生 |
| 6 |
|
女生 | 10 |
|
|
合計 |
|
| 48 |
已知在全班48人中隨機抽取1人,抽到關(guān)注NBA的學(xué)生的概率為.
(1)請將上面的表補充完整(不用寫計算過程),并判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說明你的理由.
(2)現(xiàn)記不關(guān)注NBA的6名男生中某兩人為a,b,關(guān)注NBA的10名女生中某3人為c,d,e,從這5人中選取2人進(jìn)行調(diào)查,求:至少有一人不關(guān)注NBA的被選取的概率。
下面的臨界值表,供參考
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
K | 2.706 | 3.841 | 60635 | 7.879 |
(參考公式:)其中n=a+b+c+d
(12分)已知函數(shù),k*s*5u
(1)若函數(shù)的圖像在點處的切線與直線平行,且在處取得極值,求的解析式,并確定的單調(diào)遞減區(qū)間。
(2)若時,函數(shù)在上是減函數(shù),求b的取值范圍。
已知函數(shù),,k為非零實數(shù).
(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數(shù)根,且在[-5,-1]上至多有一個實數(shù)根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【解析】本試題考查了運用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時還能對于方程解的問題,轉(zhuǎn)化為圖像與圖像的交點問題來長處理的數(shù)學(xué)思想的運用。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com