(I)若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn).求面積的最小值, 查看更多

 

題目列表(包括答案和解析)

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求的取值范圍.

查看答案和解析>>

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線y=x2的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求的取值范圍.

查看答案和解析>>

精英家教網(wǎng)已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點(diǎn)F.
(I)求橢圓E的方程;
(II)過坐標(biāo)平面上的點(diǎn)F'作拋物線c的兩條切線l1和l2,它們分別交拋物線C的另一條切線l3于A,B兩點(diǎn).
(i)若點(diǎn)F′恰好是點(diǎn)F關(guān)于-軸的對(duì)稱點(diǎn),且l3與拋物線c的切點(diǎn)恰好為拋物線的頂點(diǎn)(如圖),求證:△ABF′的外接圓過點(diǎn)F;
(ii)試探究:若改變點(diǎn)F′的位置,或切線l3的位置,或拋物線C的開口大小,(i)中的結(jié)論是否仍然成立?由此給出一個(gè)使(i)中的結(jié)論成立的命題,并加以證明.

查看答案和解析>>

已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,且過拋物線C:x2=4y的焦點(diǎn)F.
(I)求橢圓E的方程;
(II)過坐標(biāo)平面上的點(diǎn)F'作拋物線c的兩條切線l1和l2,它們分別交拋物線C的另一條切線l3于A,B兩點(diǎn).
(i)若點(diǎn)F′恰好是點(diǎn)F關(guān)于-軸的對(duì)稱點(diǎn),且l3與拋物線c的切點(diǎn)恰好為拋物線的頂點(diǎn)(如圖),求證:△ABF′的外接圓過點(diǎn)F;
(ii)試探究:若改變點(diǎn)F′的位置,或切線l3的位置,或拋物線C的開口大小,(i)中的結(jié)論是否仍然成立?由此給出一個(gè)使(i)中的結(jié)論成立的命題,并加以證明.

查看答案和解析>>

(2012•淄博一模)在平面直角坐標(biāo)系內(nèi)已知兩點(diǎn)A(-1,0)、B(1,0),若將動(dòng)點(diǎn)P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來的
2
倍后得到點(diǎn)Q(x,
2
y)
,且滿足
AQ
BQ
=1

(I)求動(dòng)點(diǎn)P所在曲線C的方程;
(II)過點(diǎn)B作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)G,試問M、G、N、H四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案