將上式代入得 查看更多

 

題目列表(包括答案和解析)

(2004•上海模擬)小王將5000元存入銀行,已知銀行一年期利率為x%,一年后,小王將所得的本利和又續(xù)存了一年,這樣,小王共可得本利和(用含x的代數(shù)式表示)
5000(1+x%)2
5000(1+x%)2

查看答案和解析>>

數(shù)學(xué)家歐拉

  歐拉(Euler),瑞士數(shù)學(xué)家及自然科學(xué)家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位.

  歐拉是18世紀(jì)數(shù)學(xué)界最杰出的人物之一,他不但為數(shù)學(xué)界做出了巨大的貢獻(xiàn),更把數(shù)學(xué)推至幾乎整個物理的領(lǐng)域.他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家,平均每年寫出八百多頁的論文,還寫了大量的力學(xué)、分析學(xué)、幾何學(xué)、變分法等的課本,《無窮小分析引論》、《微分學(xué)原理》、《積分學(xué)原理》等都成為數(shù)學(xué)中的經(jīng)典著作.

  歐拉對數(shù)學(xué)符號的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對數(shù)的底,用i表示-1,用f(x)作為函數(shù)的符號,π雖不是歐拉首先提出的,但是在歐拉倡導(dǎo)下推廣普及的.尤為不可思議的是歐拉將數(shù)學(xué)中最為活躍的五個數(shù)1,0,π,e,i竟用一個美妙絕倫的公式聯(lián)系了起來:eiπ+1=0(歐拉指數(shù)公式),在西方數(shù)學(xué)界甚至認(rèn)為此公式不亞于神的力量.

  歐拉對數(shù)學(xué)的研究如此廣泛,因此在許多數(shù)學(xué)的分支中也可經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理.

1.你對歐拉(Euler)了解嗎?請查閱歐拉(Euler)的故事,對于他“13歲時入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位”,你有何感觸?

2.作為新時代的青年,你做好將來為科學(xué)事業(yè)做貢獻(xiàn)的思想準(zhǔn)備了嗎?

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家.他的數(shù)學(xué)著作頗多,他編著的數(shù)學(xué)書共5種21卷,在他的著作中收錄了不少現(xiàn)已失傳的古代數(shù)學(xué)著作中的算題和算法.他的數(shù)學(xué)研究與教育工作的重點(diǎn)是在計算技術(shù)方面.楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)涵了許多優(yōu)美的規(guī)律.古今中外,許多數(shù)學(xué)家如賈憲、朱世杰、帕斯卡、華羅庚等都曾深入研究過,并將研究結(jié)果應(yīng)用于其他工作.下圖是一個11階的楊輝三角:

 

試回答:(其中第(1)&(5)小題只需直接給出最后的結(jié)果,無需求解過程)

(1)記第i(i∈N*)行中從左到右的第j(j∈N*)個數(shù)為aij,則數(shù)列{aij}的通項(xiàng)公式為          ,

n階楊輝三角中共有           個數(shù);

(2)第k行各數(shù)的和是;

(3)n階楊輝三角的所有數(shù)的和是;

(4)將第n行的所有數(shù)按從左到右的順序合并在一起得到的多位數(shù)等于;

(5)第p(p∈N*,且p≥2)行除去兩端的數(shù)字1以外的所有數(shù)都能被p整除,則整數(shù)p一定為(   )

A.奇數(shù)                B.質(zhì)數(shù)              C.非偶數(shù)                D.合數(shù)

(6)在第3斜列中,前5個數(shù)依次為1、3、6、10、15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:

m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).

試用含有m、k(mk∈N*)的數(shù)學(xué)公式表示上述結(jié)論并證明其正確性.

數(shù)學(xué)公式為                   .

證明:                        .

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

函數(shù)概念的發(fā)展歷程

  17世紀(jì),科學(xué)家們致力于運(yùn)動的研究,如計算天體的位置,遠(yuǎn)距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關(guān)系,并根據(jù)這種關(guān)系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達(dá)到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.

  “function”一詞最初由德國數(shù)學(xué)家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學(xué)家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.

  萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標(biāo)、切線等.1718年,他的學(xué)生,瑞士數(shù)學(xué)家約翰·伯努利(J.Bernoulli,1667~1748)強(qiáng)調(diào)函數(shù)要用公式表示.后來,數(shù)學(xué)家認(rèn)為這不是判斷函數(shù)的標(biāo)準(zhǔn).只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學(xué)家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.

  當(dāng)時很多數(shù)學(xué)家對于不用公式表示函數(shù)很不習(xí)慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀(jì)末19世紀(jì)初,人們對函數(shù)的認(rèn)識向前推進(jìn)了.德國數(shù)學(xué)家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應(yīng),則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應(yīng)就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀(jì)70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進(jìn)而用更加嚴(yán)謹(jǐn)?shù)募虾蛯?yīng)語言表述,這就是本節(jié)學(xué)習(xí)的函數(shù)概念.

  綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學(xué)技術(shù)的實(shí)際需要緊密相關(guān),而且隨著研究的深入,函數(shù)概念不斷得到嚴(yán)謹(jǐn)化、精確化的表達(dá),這與我們學(xué)習(xí)函數(shù)的過程是一樣的.

你能以函數(shù)概念的發(fā)展為背景,談?wù)剰某踔械礁咧袑W(xué)習(xí)函數(shù)概念的體會嗎?

1.探尋科學(xué)家發(fā)現(xiàn)問題的過程,對指導(dǎo)我們的學(xué)習(xí)有什么現(xiàn)實(shí)意義?

2.萊布尼茲、狄利克雷等科學(xué)家有哪些品質(zhì)值得我們學(xué)習(xí)?

查看答案和解析>>


同步練習(xí)冊答案