① 當(dāng)直線與軸不垂直時(shí).由(Ⅰ)知 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求動(dòng)點(diǎn)M的軌跡的方程;

(Ⅲ)過橢圓的焦點(diǎn)作直線與曲線交于A、B兩點(diǎn),當(dāng)的斜率為時(shí),直線 上是否存在點(diǎn)M,使若存在,求出M的坐標(biāo),若不存在,說明理由

查看答案和解析>>

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓C1的短半軸長為半徑的圓相切.  
(1)求橢圓C1的方程;  
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;  
(3)當(dāng)P不在x軸上時(shí),在曲線C2上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于PF2對(duì)稱,若存在,求出PF2的斜率范圍,若不存在,說明理由。

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>


同步練習(xí)冊答案