(吉林省吉林市2008屆上期末)設(shè)斜率為2的直線l.過(guò)雙曲線的右焦 點(diǎn).且與雙曲線的左.右兩支分別相交.則雙曲線離心率.e的取值范圍是 A.e> B.e> C.1<e< D.1<e<答案:A 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,點(diǎn)M(2,3),N(2,-3)為C上兩點(diǎn),斜率為
1
2
的直線l與橢圓C交于點(diǎn)A,B(A,B在直線MN兩側(cè)).
(I)求四邊形MANB面積的最大值;
(II)設(shè)直線AM,BM的斜率為k1,k2,試判斷k1+k2是否為定值.若是,求出這個(gè)定值;若不是,說(shuō)明理由.

查看答案和解析>>

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),M是橢圓上的一點(diǎn),且滿(mǎn)足
F1M
F2M
=0

(1)求離心率的取值范圍;
(2)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
2
;
①求此時(shí)橢圓G的方程;
②設(shè)斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P(0,-
3
3
)
、Q的直線對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(I)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0)
,設(shè)斜率為k的直線l,交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過(guò)原點(diǎn)的定直線上;
(Ⅱ)利用(I)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡(jiǎn)要寫(xiě)出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過(guò)點(diǎn)( -2 , -
2
 )
的橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0).設(shè)斜率為k的直線l,交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過(guò)原點(diǎn)的定直線上.

查看答案和解析>>

精英家教網(wǎng)(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過(guò)點(diǎn)(-2,-
2
)的橢圓的標(biāo)準(zhǔn)方程.
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0).設(shè)斜率為k的直線l交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過(guò)原點(diǎn)的定直線上.
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡(jiǎn)要寫(xiě)出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>


同步練習(xí)冊(cè)答案