⑴求雙曲線C的方程; ⑵求證:為定值. 查看更多

 

題目列表(包括答案和解析)

如圖,是雙曲線C的兩個(gè)焦點(diǎn),直線是雙曲線C的右準(zhǔn)線.為雙曲線C的兩個(gè)頂點(diǎn),點(diǎn)P是雙曲線C右支上異于的一動(dòng)點(diǎn),直線交雙曲線C的右準(zhǔn)線分別為、兩點(diǎn).

⑴求雙曲線C的方程;

⑵求證:為定值.

                                             

查看答案和解析>>

已知雙曲線C的漸近線方程為y=±
3
x
,右焦點(diǎn)F(c,0)到漸近線的距離為
3

(1)求雙曲線C的方程;
(2)過F作斜率為k的直線l交雙曲線于A、B兩點(diǎn),線段AB的中垂線交x軸于D,求證:
|AB|
|FD|
為定值.

查看答案和解析>>

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

已知雙曲線C的中心在坐標(biāo)原點(diǎn),漸近線方程是3x±2y=0,左焦點(diǎn)的坐標(biāo)為(-
13
,0)
,A、B為雙曲線C上的兩個(gè)動(dòng)點(diǎn),滿足
OA
OB
=0.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)求
1
|
OA
|
2
+
1
|
OB
|
2
的值;
(Ⅲ)動(dòng)點(diǎn)P在線段AB上,滿足
OP
AB
=0,求證:點(diǎn)P在定圓上.

查看答案和解析>>

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求
DA
DB
的值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(M,N都不同于點(diǎn)E),且EM⊥EN,求證:直線MN與x軸的交點(diǎn)是一個(gè)定點(diǎn).

查看答案和解析>>

一、選擇題(60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

C

B

(C

D

D

A

B

 

C

B

 

二、填空題(20分)

13.  15    14.5 15.   16.

三、解答題(70分)

17.(1)   ,∴,∴

           (5分)

(2)     

,∴,∴

                                                         (理10分)

18. (1)記“甲恰好投進(jìn)兩球”為事件A,則           (6分)

(2)記“甲比乙多投進(jìn)兩球”,其中“恰好甲投進(jìn)兩球且乙未投進(jìn)”為事件,“恰好甲投進(jìn)三球且乙投進(jìn)一球”為事件,根據(jù)提議,互斥,(理12分)

19.(1)                     (6分)

(2)                                               (文12分)

(3)                                     (理12分)

20.(1)設(shè)數(shù)列的公比為,則

                                                                         (文6分,理4分)

(2)由(1)可知

所以數(shù)列是一個(gè)以為首項(xiàng),1為公差的等差數(shù)列

                       (文12分,理8分)

(3)∵

∴當(dāng)時(shí),,即

  當(dāng)時(shí),,即

綜上可知:時(shí),;時(shí),       (理12分)

21. ⑴由已知

     

     所求雙曲線C的方程為;

⑵設(shè)P點(diǎn)的坐標(biāo)為,M,N的縱坐標(biāo)分別為.

 

 

    

共線

同理

              

22.

(1)由題意得:

∴在;在;在

在此處取得極小值

由①②③聯(lián)立得:

                                                         (6分)

(2)設(shè)切點(diǎn)Q

,

求得:,方程有三個(gè)根。

需:

故:

因此所求實(shí)數(shù)的取值范圍為:                     (理12

 

 


同步練習(xí)冊答案