④對任意的.f(x)都不是偶函數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)是R上的偶函數(shù),對任意x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí),若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是

[     ]
A.(1,2)
B.(2,+∞)
C.      
D.

查看答案和解析>>

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a,b∈R都滿足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判斷的奇偶性,并證明你的結(jié)論;
(3)若f(2)=2,un=
f(2n)2n
(n∈N*)
,求證數(shù)列{un}是等差數(shù)列,并求{un}的通項(xiàng)公式.

查看答案和解析>>

函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足對于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)若f(4)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),f(-1)=0,且對任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則
2010
k=0
f(
k
2
)
的值是
0
0

查看答案和解析>>

已知f(x)是偶函數(shù),且在(-∞,0]上單調(diào)遞減,對任意x∈R,x≠0,都有f(x)+f(
1
x
)=-1+2log2(x2+
1
x2
)

(Ⅰ)指出f(x)在[0,+∞)上的單調(diào)性(不要求證明),并求f(1)的值;
(Ⅱ)k為常數(shù),-1<k<1,解關(guān)于x的不等式f(
kx+3
x2+9
)>
1
2

查看答案和解析>>


同步練習(xí)冊答案