B.函數(shù)的最小正周期為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),則下列結論正確的是    (     )

(A) 函數(shù)在區(qū)間上為增函數(shù)

(B) 函數(shù)的最小正周期為 

(C) 函數(shù)的圖象關于直線對稱

(D) 將函數(shù)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)的圖象

 

查看答案和解析>>

(09年湖北補習學校聯(lián)考文)下列命題正確的是                                    ( 

A.函數(shù)在區(qū)間內(nèi)單調(diào)遞增

B.函數(shù)的最小正周期為

C.函數(shù)的圖像是關于直線成軸對稱的圖形

D.函數(shù)的圖像是關于點成中心對稱的圖形

查看答案和解析>>

下列命題正確的是

A.函數(shù)在區(qū)間內(nèi)單調(diào)遞增

B.函數(shù)的最小正周期為

C.函數(shù)的圖像關于點成中心對稱

D.函數(shù)的圖像關于直線成軸對稱

查看答案和解析>>

(08年石家莊市一模文)設函數(shù),則下列結論正確的是

    A.函數(shù)是奇函數(shù)                       B.函數(shù)的最小正周期為4      

C.函數(shù)上為增函數(shù)            D.函數(shù)無最小值

查看答案和解析>>

下列命題正確的是
[     ]
A.函數(shù)在區(qū)間內(nèi)單調(diào)遞增
B.函數(shù)的最小正周期為
C.函數(shù)的圖像關于直線成軸對稱
D.函數(shù)的圖像關于點成中心對稱

查看答案和解析>>

一、選擇題:  B C A D B       C A B D C

二、填空題:

  11、       12、      13、  

14、      15、②③

三、解答題:

16.解:(1)    ……………………………1分

=

==      …………………………………………4分 

∵θ∈[π,2π],∴,

≤1      則 max=2. ………………………………………………6分                                             

(2)  由已知,得     …………………………………8分            

        ……………………10分  

∵θ∈[π,2π]∴,∴. …………………12分

17.解:依題意知:.……4分

   (1)對于

是奇函數(shù)……………………………………….……6分

   (2)時,單調(diào)遞減,

時,單調(diào)遞增………………………………………….…8分

……….…………..…10分

………….……12分

18.解:(1)當

                    ………………2分

,..............................................5分

        ................6分

定義域為     .................................7分

   (2)對于,             

顯然當(元),    ..................................9分

∴當每輛自行車的日租金定在11元時,才能使一日的凈收入最多。..........12分

 

19.解:(1)由題意               …………………………2分

時,取得極值,  所以

                即      …………………4分

           此時當時,,當時,,

             是函數(shù)的最小值。          ………………………6分

       (2)設,則  ,……8分

            設,

            ,令解得

       列表如下:

 

 

__

0

+

 

 

 

 

 

 

 

 

函數(shù)上是增函數(shù),在上是減函數(shù)。

時,有極大值;當時,有極小值……10分

函數(shù)的圖象有兩個公共點,函數(shù)的圖象有兩個公共點

     或             ……12分

 

20.解:(1)

.令,則.…………2分

時,,則數(shù)列不是等比數(shù)列. 

時,數(shù)列不是等比數(shù)列.………………… 5分

時,,則數(shù)列是等比數(shù)列,且公比為2. 

,即.解得.……7分

(2)由(Ⅰ)知,當時,, 

,   ………………………①

, …………②

由①-②:

               

,    ………………………………..………11分

.      …………………..………13分

 

21.解:(1)∵成等比數(shù)列 ∴ 是橢圓上任意一點,依橢圓的定義得

為所求的橢圓方程.         ……………………5分     

(2)假設存在,因與直線相交,不可能垂直軸   …………………6分

 因此可設的方程為:

  ①     ……………………8分

方程①有兩個不等的實數(shù)根

、        ………10分

設兩個交點、的坐標分別為 ∴

∵線段恰被直線平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得    ………13分

∴直線的傾斜角范圍為                 …………………14分

 


同步練習冊答案