題目列表(包括答案和解析)
(09年湖南師大附中月考理)(13分)
已知向量,,動點到定直線的距離等于,并且滿足,其中是坐標原點,是參數(shù)。
(1)求動點的軌跡方程;
(2)當時,若直線與動點的軌跡相交于、兩點,線段的垂直平分線交軸,求的取值范圍;
(3)如果動點的軌跡是一條圓錐曲線,其離心率滿足,求的取值范圍。已知向量,動點到定直線的距離等于,并且滿足,其中為坐標原點,為非負實數(shù).
(1)求動點的軌跡方程;
(2)若將曲線向左平移一個單位,得曲線,試判斷曲線為何種類型;
(3)若(2)中曲線為圓錐曲線,其離心率滿足,當是曲線的兩個焦點時,則圓錐曲線上恒存在點,使得成立,求實數(shù)的取值范圍.
已知向量動點到定直線的距離等于并且滿足其中是坐標原點,是參數(shù).
(1)求動點的軌跡方程,并判斷曲線類型;
(2)當時,求的最大值和最小值;
(3)如果動點的軌跡是圓錐曲線,其離心率滿足求實數(shù)的取值范圍。
(本題14分)
已知向量動點到定直線的距離等于并且滿足其中O是坐標原點,是參數(shù).
(I)求動點的軌跡方程,并判斷曲線類型;
(Ⅱ) 當時,求的最大值和最小值;
(Ⅲ) 如果動點M的軌跡是圓錐曲線,其離心率滿足求實數(shù)的取值范圍.
(本題14分)已知向量動點到定直線的距離等于并且滿足其中是坐標原點,是參數(shù).
(1)求動點的軌跡方程,并判斷曲線類型;
(2)當時,求的最大值和最小值;
(3)如果動點的軌跡是圓錐曲線,其離心率滿足求實數(shù)的取值范圍。
一、選擇題:
1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.B
二、填空題:
9.必要不充分 10. 11.線段或鈍角三角形 12.
13. 14. 15.
三、解答題:
16.解:(1)∵,……………………………………………(2分)
∴
……………………………………………(4分)
∴當()時,
最小正周期為……………………………………………(6分)
(2)∵
∴……………………………………………(9分)
∴…………(12分)
17.解:(1)記第一、二、三次射擊命中目標分別為事件A、B、C,三次均未命中目標的事件為D.依題意
。設(shè)在米處擊中目標的概率為,則,由時,所以,,即,…………………(2分)
,…………………………(5分)
由于各次射擊都是獨立的,所以該射手在三次射擊中命中目標的概率為
…………………………(8分)
(2)依題意,設(shè)射手甲得分為,則,,
,,所以的分布列為
所以…………………………(12分)
18.解:解法一:(1)∵平面,∴
又∵為的中點,∴,而,且,∴為等邊三角形。∴,∴,
∴,∴,
∴是異面直線與的公垂線段。
∴異面直線與的距離為1。…………………………(6分)
(2)∵,∴…………………………(8分)
又∵,∴異面直線與所成的角即為二面角的大小。
∴即為所求。
又∵,…………………………(10分)
∴…………………………(12分)
解法二:(1)建立如圖所示空間直角坐標系。
由于,,,
,在三棱柱中有
,,,
,……………………(2分)
,∴,
故,即……………(4分)
又面,故。因此是異面直線與的公垂線段,
則,故異面直線與的距離為1!6分)
(2)由已知有,,故二面角的平面角的大小為向量與的夾角。
因,…………………………(10分)
故,
即…………………………(12分)
19.解:(1)由于在各段上都是單調(diào)增函數(shù),因此在第一段上不存在買多于本書比恰好買本書所花錢少的問題,一定是各段分界點附近因單價的差別造成買多于本書比恰好買本書所花錢少的現(xiàn)象.
,,∴……………(1分)
,∴…………………………(2分)
,,∴
,∴,,
∴,,∴…………………(5分)
∴這樣的有23,24,45,46,47,48,共6個!6分)
(2)設(shè)甲買本書,則乙買本,且,
①當時,,
出版公司賺得錢數(shù)…………………(7分)
②當時,,
出版公司賺得錢數(shù)…………………(8分)
③當時,,
出版公司賺得錢數(shù)…………………(9分)
∴……………………………………(10分)
∴當時,;當時,;
當時,。
故出版公司至少能賺302元,最多賺384元.……………………………………(13分)
20.解:(1)設(shè),則由,且是原點,
得,,,從而,,,
,,根據(jù)
得,
即為所求軌跡方程!(4分)
(2)當時,動點的軌跡方程是,即,
∵的方程為,∴代入,
∴,∴,∴,
∴或,∴。
∴的中點為,∴垂直平分線方程為,
令得,∴
∴,
∴()…………………(8分)
(3)由于,即,所以此時圓錐曲線是橢圓,其方程可以化為………………………………(9分)
①當時,,,,此時,
而
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com