題目列表(包括答案和解析)
(09年湖南師大附中月考文)(12分)
如圖,在等腰梯形中,,,,為邊上一點(diǎn),且,將沿折起,使平面平面.
(1)求證:平面平面;
(2)試在上找一點(diǎn),使截面把幾何體分成兩部分,且;
(3)在(2)的條件下,判斷是否平行于平面.(12分)如圖,在等腰梯形中,已知均為梯形的高,且。現(xiàn)沿將和折起,使點(diǎn)重合為一點(diǎn),如圖②所示。又點(diǎn)為線段的中點(diǎn),點(diǎn)在線段上,且。
(1)求線段的長(zhǎng);
(2)求二面角的大小。
(12分)如圖①,在等腰梯形中,已知均為梯形的高,且。現(xiàn)沿將和折起,使點(diǎn)重合為一點(diǎn),如圖②所示。又點(diǎn)為線段的中點(diǎn),點(diǎn)在線段上,且。
(1)求線段的長(zhǎng);
(2)求二面角的大小。
如圖,在等腰梯形中,是梯形的高,,,現(xiàn)將梯形沿折起,使,且,得一簡(jiǎn)單組合體如圖所示,已知分別為的中點(diǎn).
(1)求證:平面;
(2)求證:平面.
1.D 2.C 3.A 4.B 5.D 6.C 7.C 8.A
9. 10. 25 11. 12.或者 13.21 14.3 15.
16.解:(1)
……………………………………………(3分)
∴值域?yàn)?sub>…………………………………………………………………(6分)
(不同變形參照給分)
(2)因?yàn)?sub>的周期為
∴………………………………………………………………(8分)
∴
∴在、上單調(diào)遞增,
在上單調(diào)遞減!(12分)
17.解:按一、二、三等獎(jiǎng)的順序,獲獎(jiǎng)人數(shù)有三種情況:
,,…………………………………………………………(1分)
當(dāng)獲獎(jiǎng)人數(shù)為時(shí),發(fā)獎(jiǎng)方式有:(種)…………………(3分)
當(dāng)獲獎(jiǎng)人數(shù)為時(shí),發(fā)獎(jiǎng)方式有:(種)…………………(5分)
當(dāng)獲獎(jiǎng)人數(shù)為時(shí),發(fā)獎(jiǎng)方式有:(種)…………………(7分)
(1)故恰有2人獲一等獎(jiǎng)的概率為……………………(9分)
(2)故恰有3人獲三等獎(jiǎng)的概率為……………………(11分)
答:(略)………………………………………………………………………(12分)
18.解:(1)證明:依題意知,又∵平面平面,∴平面
又平面,∴平面平面.……………………………(4分)
(2)解:∵,………………………………………(6分)
設(shè)P、M到底面的距離分別為、,則
∴,∴為中點(diǎn)!(8分)
(3)∵,平面,平面,∴平面
…………………………………………………(10分)
若平面,∵,∴平面平面
這與平面與平面有公共點(diǎn)矛盾
∴與平面不平行……………………………………………………(12分)
(本題也可以用向量法解答)
19.解:(1)由,得,
兩式相減,得,……………………………………………(3分)
所以數(shù)列,,,…,,…是以為首項(xiàng),3為公差的等差數(shù)列,
即數(shù)列為等差數(shù)列; ……………………………………………(5分)
又因?yàn)?sub>,,
∴
∴數(shù)列,,,…,,…是以為首項(xiàng),3為公差的等差數(shù)列,
即數(shù)列為等差數(shù)列. ……………………………………………………(7分)
(2)
……………………………………………………(10分)
∴,∴,,
∵數(shù)列是等差數(shù)列,∴,
∴,
解得:,(舍去).……………………………………………(13分)
20.解(1)令,.
由題意得:
又,所以,
所以…………………………………(4分)
(2)∵,∴,于是,
∴,
∴橢圓E的方程為…………………………………………………(5分)
從而,
設(shè)點(diǎn)M、N、G的坐標(biāo)依次為、、,
∵,∴,
∴………………………………………………………………(7分).
又,
且,
∴
即得. ………………………………………………(9分)
又,
故得.……………………………………………(*)(10分)
因不垂直于軸,設(shè)直線的方程為,與橢圓:聯(lián)立得:
∵點(diǎn)在橢圓內(nèi)部,
∴直線必與橢圓有兩個(gè)不同交點(diǎn).
方程有兩個(gè)不等實(shí)數(shù)根,
則由根與系數(shù)的關(guān)系,得
,,
代入(*)得
整理,得,即
∴存在這樣的定點(diǎn)滿足題設(shè).…………………………………………(13分)
21.解:(1)∵,
∴,即。又,
∴即為,
∴
∵,∴.
解得,
又∵方程,()有兩根,∴
而恒成立,
∴的取值范圍是.………………………………………………(6分)
(2)∵、是方程的兩根即的兩根為、
∴,
∴
∵,∴當(dāng)且僅當(dāng),即時(shí),取最小值.
即時(shí),最。 ………………………………………………(10分)
此時(shí),,
令,得,,
∵,∴、、的變化情況如下表
ㄊ
極大 值
ㄋ
極小值
ㄊ
∴由表知:的極大值為,極小值為,由題知。
解得,此時(shí)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com