(1)當(dāng)為何值時.PQ⊥BC? DA P 查看更多

 

題目列表(包括答案和解析)

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3cm,AD=14cm,BC=10cm,動點P從D點精英家教網(wǎng)出發(fā),沿DA方向以2cm/秒的速度運動,運動時間為t秒.
(1)當(dāng)t為何值時,以PDCB為頂點的四邊形是平行四邊形;
(2)當(dāng)t為何值時,以PCD為頂點的三角形是直角三角形;
(3)問:在點P的運動過程中,梯形內(nèi)是否存在這樣的點Q,使得過PQ的直線與BC相交且把梯形ABCD分成面積相等的兩部分?若存在,請你用一句話概括出Q點的位置;否則說明理由.

查看答案和解析>>

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3cm,AD=14cm,BC=10cm,動點P從D點出發(fā),沿DA方向以2cm/秒的速度運動,運動時間為t秒.
(1)當(dāng)t為何值時,以PDCB為頂點的四邊形是平行四邊形;
(2)當(dāng)t為何值時,以PCD為頂點的三角形是直角三角形;
(3)問:在點P的運動過程中,梯形內(nèi)是否存在這樣的點Q,使得過PQ的直線與BC相交且把梯形ABCD分成面積相等的兩部分?若存在,請你用一句話概括出Q點的位置;否則說明理由.

查看答案和解析>>

如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.

(1)求證:;

(2)設(shè)EF=x,當(dāng)x為何值時,矩形EFPQ的面積最大?并求出最大面積;

(3)當(dāng)矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當(dāng)矩形的邊PQ到達A點時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.

 

查看答案和解析>>

如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.

(1)求證:;
(2)設(shè)EF=x,當(dāng)x為何值時,矩形EFPQ的面積最大?并求出最大面積;
(3)當(dāng)矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當(dāng)矩形的邊PQ到達A點時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.

(1)求證:;

(2)設(shè)EF=x,當(dāng)x為何值時,矩形EFPQ的面積最大?并求出最大面積;

(3)當(dāng)矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當(dāng)矩形的邊PQ到達A點時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

一、選擇題(每小題2分,共20分)

1.A  2.D  3.D  4.B  5.C  6.B  7.A  8.D  9.B 10.C

二、填空題(每小題3分,共24分)

11.   12.  13.9   14.()   15.2 

16.2   17.50°  18.5

三、解答題

19.解:原式=

=………………………………………………………………5分

當(dāng)=-時,原式==.………………………………………8分

20.解:(1)解:∵∠AOB =60°,OC平分∠BOA,∴

∵ PD∥OA,  ∴ ∠DPO=∠AOC =30°  ∴ DP=DO   ……………………  3分

過點D作DE⊥OP于E,則OE=OP. ……………………………………………      5分

在Rr△DOE中,cos∠DOE=6×cos30°=         … 7分

∴OP=.  即 OP的長為cm.        ……………………………………      8分

21.解:(1) 中小獎(不超過50元)的概率為. ……………… 2分

(2)沒有欺騙顧客.             

因為

         (元)

所以平均獎金確實是180元.  …………………………………………………4分

(3)10;10.                   ………………………………………………… 6分

“平均獎金180元”的說法不能反映中獎的一般金額.因為平均數(shù)容易受極端值的影響,在此問題中,用眾數(shù)或中位數(shù)都能反映中獎的一般金額.…………………8分

22.(1)由題意知直線交y軸于點D的坐標(biāo)為(0,1),A點坐標(biāo)為(2,3)

   ∴……………………………2分

(2)設(shè)直線l的一次函數(shù)的解析式為

∵直線l經(jīng)過點A(2,3),點C(0,-2)

   解得:

∴直線l的一次函數(shù)的解析式為…………………………………………5分

(3)∵,∴,

由圖像知:當(dāng)x>-1時直線表示的一次函數(shù)的函數(shù)值大于0;當(dāng)x>時直線表示的一次函數(shù)的函數(shù)值大于0;…………………………………………………………7分

∴當(dāng)x>時直線表示的一次函數(shù)的函數(shù)值大于0;……………………8分

23.解:⑴相等⑵9,⑶9,…………………………………………………3分

⑷△ADC的面積總等于△ABC的面積9!4分

證明如下:

∵△ABC和△BDE都是等邊三角形∴∠ACB=∠DBC=60°

∴BD∥AC,……………………………………………………………………6分

(同底等高)∵

∴△ADC的面積總等于△ABC的面積9!8分)

(5)畫圖略!10分

24.(1)成立.    ……………………………………………………1分

如圖,延長CB到E,使BE=DN,連接AE。??????????????????????????????????????????????????????????? 2分

證明:∵AB=AD,∠ABE=∠D=90°  ∴△ABE≌△AND………………………………3分

∴AE=AN, ∠BAE=∠NAD ………………………………………………………………4分

∵∠BAM+∠NAD=45°   ∴∠BAM+∠BAE =45°即∠EAM=∠MAN =45°

……………………………………………………………………5分

????????????????????????????????????????? 6分

(2)???????????????????????????????????????????????????????????????????????????????????????????????? 7分

證明略:方法同(1)………………………………………………………10分

25. (1) M(12,0),P(6,6). ……………………………………………………………4分

(2) 設(shè)此函數(shù)關(guān)系式為:.  ……………………………………5分

∵函數(shù)經(jīng)過點(0,3),

,即. ………………………………………………6分

∴此函數(shù)解析式為:.……………………8分

(3) 設(shè)A(m,0),則

B(12-m,0),C,D . ………10分

∴“支撐架”總長AD+DC+CB =

= .  ………………………………………………………………………………………………11分

    ∵<0.  ∴ 當(dāng)m = 0時,AD+DC+CB有最大值為18.  ………………………12分

26.(1)由題意知:BD=5,BQ=t,QC=4-t,DP=t,BP=5-t

∵PQ⊥BC   ∴△BPQ∽△BDC   ∴   ∴

當(dāng)時,PQ⊥BC……………………………………………………………………3分

(2)過點P作PM⊥BC,垂足為M

∴△BPM∽△BDC   ∴  ∴……………………4分

=…………………………………………5分

∴當(dāng)時,S有最大值.……………………………………………………6分

(3)①當(dāng)BP=BQ時,,  ∴……………………………………7分

②當(dāng)BQ=PQ時,作QE⊥BD,垂足為E,此時,BE=

∴△BQE∽△BDC   ∴  即   ∴……………………9分

③當(dāng)BP=PQ時,作PF⊥BC,垂足為F, 此時,BF=

∴△BPF∽△BDC   ∴  即   ∴……………………11分

,,均使△PBQ為等腰三角形. …………………………12分

 

 


同步練習(xí)冊答案