22.已知函數(shù)為大于零的常數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為大于零的常數(shù)。w.w.w.k.s.5.u.c.o.m    

   (1)若函數(shù)內(nèi)單調(diào)遞增,求a的取值范圍;

   (2)求函數(shù)在區(qū)間[1,2]上的最小值。

查看答案和解析>>

已知函數(shù)為大于零的常數(shù)。

   (1)若函數(shù)內(nèi)單調(diào)遞增,求a的取值范圍

   (2)求函數(shù)在區(qū)間[1,2]上的最小值。

查看答案和解析>>

已知函數(shù)為大于零的常數(shù)。

(1)若函數(shù)內(nèi)調(diào)遞增,求a的取值范圍;

(2)求函數(shù)在區(qū)間[1,2]上的最小值。

 

查看答案和解析>>

已知函數(shù)為大于零的常數(shù)。

(1)若函數(shù)內(nèi)單調(diào)遞增,求a的取值范圍;

(2)求函數(shù)在區(qū)間[1,2]上的最小值。

 

查看答案和解析>>

已知函數(shù)為大于零的常數(shù)。
(1)若函數(shù)內(nèi)調(diào)遞增,求a的取值范圍;
(2)求函數(shù)在區(qū)間[1,2]上的最小值。

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng),

           12分

18.解:(1)依題意,甲答對(duì)主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對(duì)試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因?yàn)槭录嗀、B相互獨(dú)立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個(gè)考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過(guò)點(diǎn)E作EG交CF于G,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因?yàn)?sub>平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)過(guò)點(diǎn)B作交FE的延長(zhǎng)線于H,

       連結(jié)AH,BH。

       由平面,

       所以為二面角A―EF―C的平面角

      

       又因?yàn)?sub>

       所以CF=4,從而BE=CG=3。

       于是    10分

       在

       則,

       因?yàn)?sub>

<fieldset id="2ck2a"><dd id="2ck2a"></dd></fieldset>
  • <object id="2ck2a"><strike id="2ck2a"></strike></object>
      <code id="2ck2a"><wbr id="2ck2a"></wbr></code>
    • <rt id="2ck2a"><tr id="2ck2a"></tr></rt>
      <tfoot id="2ck2a"><abbr id="2ck2a"></abbr></tfoot>
      <table id="2ck2a"></table>

             解法二:(1)如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),

             建立空間直角坐標(biāo)系

             設(shè)

             則

            

             于是

       

       

       

       

      20.解:(1)當(dāng)時(shí),由已知得

            

             同理,可解得   4分

         (2)解法一:由題設(shè)

             當(dāng)

             代入上式,得     (*) 6分

             由(1)可得

             由(*)式可得

             由此猜想:   8分

             證明:①當(dāng)時(shí),結(jié)論成立。

             ②假設(shè)當(dāng)時(shí)結(jié)論成立,

             即

             那么,由(*)得

            

             所以當(dāng)時(shí)結(jié)論也成立,

             根據(jù)①和②可知,

             對(duì)所有正整數(shù)n都成立。

             因   12分

             解法二:由題設(shè)

             當(dāng)

             代入上式,得   6分

            

            

             -1的等差數(shù)列,

            

                12分

      21.解:(1)由橢圓C的離心率

             得,其中,

             橢圓C的左、右焦點(diǎn)分別為

             又點(diǎn)F2在線段PF1的中垂線上

            

             解得

                4分

         (2)由題意,知直線MN存在斜率,設(shè)其方程為

             由

             消去

             設(shè)

             則

             且   8分

             由已知,

             得

             化簡(jiǎn),得     10分

            

             整理得

      * 直線MN的方程為,     

             因此直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

      22.解:   2分

         (1)由已知,得上恒成立,

             即上恒成立

             又當(dāng)

                4分

         (2)當(dāng)時(shí),

             在(1,2)上恒成立,

             這時(shí)在[1,2]上為增函數(shù)

              

             當(dāng)

             在(1,2)上恒成立,

             這時(shí)在[1,2]上為減函數(shù)

            

             當(dāng)時(shí),

             令 

             又 

                 9分

             綜上,在[1,2]上的最小值為

             ①當(dāng)

             ②當(dāng)時(shí),

             ③當(dāng)   10分

         (3)由(1),知函數(shù)上為增函數(shù),

             當(dāng)

            

             即恒成立    12分

            

            

            

             恒成立    14分

       


      同步練習(xí)冊(cè)答案