(2)求函數(shù)在區(qū)間[1.2]上的最小值. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)在區(qū)間上的最小值為3,

(1)求常數(shù)的值;

(2)求此函數(shù)當(dāng)時(shí)的最大值和最小值,并求相應(yīng)的的取值集合。

 

查看答案和解析>>

若函數(shù)在區(qū)間上的最小值為3,
(1)求常數(shù)的值;
(2)求此函數(shù)當(dāng)時(shí)的最大值和最小值,并求相應(yīng)的的取值集合。

查看答案和解析>>

已知函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減.

(1)求的解析式;

(2)設(shè),若對(duì)任意的1、x­2不等式恒成立,求實(shí)數(shù)m的最小值。

 

查看答案和解析>>

已知函數(shù)在區(qū)間上的最大值為,最小值為。

(1)求;

(2)作出的圖像,并分別指出的最小值和的最大值各為多少?

 

查看答案和解析>>

已知函數(shù)在區(qū)間上為增函數(shù),且。

(1)當(dāng)時(shí),求的值;

(2)當(dāng)最小時(shí),

①求的值;

②若圖象上的兩點(diǎn),且存在實(shí)數(shù)使得

,證明:。

 

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;(文)0.7

14.

15.;  (文)

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng),

           12分

18.解:設(shè)“中三等獎(jiǎng)”為事件A,“中獎(jiǎng)”為事件B,

       從四個(gè)小球中有放回的取兩個(gè)共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)

   (1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果       3分

   (1)兩個(gè)小球號(hào)碼相加之和等于4的取法有3種:

   (1,3),(2,2),(3,1)

       兩個(gè)小球號(hào)相加之和等于3的取法有4種:

   (0,3),(1,2),(2,1),(3,0)   4分

       由互斥事件的加法公式得

      

       即中三等獎(jiǎng)的概率為    6分

   (2)兩個(gè)小球號(hào)碼相加之和等于3的取法有4種;

       兩個(gè)小球相加之和等于4的取法有3種;

       兩個(gè)小球號(hào)碼相加之和等于5的取法有2種:(2,3),(3,2)

       兩個(gè)小球號(hào)碼相加之和等于6的取法有1種:(3,3)   9分

       由互斥事件的加法公式得

      

    <center id="sk6sy"></center>
<table id="sk6sy"><tbody id="sk6sy"></tbody></table>
<center id="sk6sy"><optgroup id="sk6sy"></optgroup></center>

19.解法一(1)過點(diǎn)E作EG交CF于G,

       連結(jié)DG,可得四邊形BCGE為矩形,

        • //

                 所以AD=EG,從而四邊形ADGE為平行四邊形

                 故AE//DG    4分

                 因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2c9751a517b53bdf1bcd72912edcf2ae.zip/73789.files/image201.gif" >平面DCF, 平面DCF,

                 所以AE//平面DCF   6分

                

                 在

                

                 M是AE中點(diǎn),

                

                 由側(cè)視圖是矩形,俯視圖是直角梯形,

                 得

                 平面BCM

                 又平面BCM。

          20.解:(1)當(dāng)時(shí),由已知得

                

                 同理,可解得   4分

             (2)解法一:由題設(shè)

                 當(dāng)

                 代入上式,得     (*) 6分

                 由(1)可得

                 由(*)式可得

                 由此猜想:   8分

                 證明:①當(dāng)時(shí),結(jié)論成立。

                 ②假設(shè)當(dāng)時(shí)結(jié)論成立,

                 即

                 那么,由(*)得

                

                 所以當(dāng)時(shí)結(jié)論也成立,

                 根據(jù)①和②可知,

                 對(duì)所有正整數(shù)n都成立。

                 因   12分

                 解法二:由題設(shè)

                 當(dāng)

                 代入上式,得   6分

                

                

                 -1的等差數(shù)列,

                

                    12分

          21.解:(1)由橢圓C的離心率

                 得,其中,

                 橢圓C的左、右焦點(diǎn)分別為

                 又點(diǎn)F2在線段PF1的中垂線上

                

                 解得

                    4分

             (2)由題意,知直線MN存在斜率,設(shè)其方程為

                 由

                 消去

                 設(shè)

                 則

                 且   8分

                 由已知,

                 得

                 化簡(jiǎn),得     10分

                

                 整理得

          * 直線MN的方程為,     

                 因此直線MN過定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

          22.解:   2分

             (1)由已知,得上恒成立,

                 即上恒成立

                 又當(dāng)

                    6分

             (2)當(dāng)時(shí),

                 在(1,2)上恒成立,

                 這時(shí)在[1,2]上為增函數(shù)

                    8分

                 當(dāng)

                 在(1,2)上恒成立,

                 這時(shí)在[1,2]上為減函數(shù)

                

                 當(dāng)時(shí),

                 令   10分

                 又 

                     12分

                 綜上,在[1,2]上的最小值為

                 ①當(dāng)

                 ②當(dāng)時(shí),

                 ③當(dāng)   14分


          同步練習(xí)冊(cè)答案