(2)令是數(shù)列 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列.令bn=1-a1-a2-…-an,cn=2-b1-b2-…-bn,n∈N*
(1)試用a、q表示bn和cn;
(2)若a<0,q>0且q≠1,試比較cn與cn+1的大。
(3)是否存在實(shí)數(shù)對(duì)(a,q),其中q≠1,使{cn}成等比數(shù)列.若存在,求出實(shí)數(shù)對(duì)(a,q)和{cn};若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

數(shù)列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)對(duì)任意n∈N*成立,令bn=an+1-an,且{bn}是等比數(shù)列.
(1)求實(shí)數(shù)k的值;   
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

數(shù)列{bn}的首項(xiàng)b1=1,前n項(xiàng)和為Sn,點(diǎn)(n,Sn)、(4,10)都在二次函數(shù)y=ax2+bx的圖象上,數(shù)列{an}滿足
bn
an
=2n
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令cn=(1-
1
n+1
1
an
,Rn=
1
c1
+
1
c2
+
1
c3
+…+
1
cn
.試比較Rn
5n
2n+1
的大小,并證明你的結(jié)論.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=a,且an+1=2Sn+1,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)a的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令cn=
bn-4bn
(n∈N*)
,在(2)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”.

查看答案和解析>>

數(shù)列{an}是公差為d(d>0)的等差數(shù)列,且a2是a1與a4的等比中項(xiàng),設(shè)Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求證:
Sn
+
Sn+2
=2
Sn+1
;
(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n項(xiàng)和為Tn,是否存在整數(shù)P、Q,使得對(duì)任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題:每小題5分,共60分

BCCAB    ACADB    BB

二、填空題:每小題4分,共16分

13.,甲,甲:

三、解答題:本題滿分共74分,解答應(yīng)有必要的文字說(shuō)明,解答過(guò)程或演算步驟

17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用4’表示)為(2,3),(2,4),(2,4),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,3),(4’,4)共12種不同情況--------(4分)

 

(2)甲抽到3,乙抽到的牌只能是2,4,4’,

  因此乙抽到的牌的數(shù)字大于3的概率是;------------------------(6分)

 

(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(4’,2),(4’,3)共5種,所以,甲勝的概率是,乙獲勝的與甲獲勝是對(duì)立事件,所以乙獲勝的概率是,

   此游戲不公平------------------(12分)

18.解:(1)由題意知.

     (5分)

 

  -----------------(7分)

 

(2)

-------------------------------------(9分)

---------------(12分)

   19.解:(1)低面ABCD是正方形,O為中心,AC⊥BD

      又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)

www.ks5u.com     (2)連接

      

      

       又由(1)知,AC⊥BD

       且AC⊥平面SBD,

       所以,AC⊥SB---------------(8分)

       ,且EMNE=E

       ⊥平面EMN-------------(10分)

       因此,當(dāng)P點(diǎn)在線段MN上移動(dòng)時(shí),總有AC⊥EP-----(12分)

 

  20.解:

      -------------------------------(2分)

      (2)

       則

       令--------------------------------(4分)

       當(dāng)x在區(qū)間[-1,2]上變化時(shí),y’,y的變化情況如下表:

     

X

-1

1

(1,2)

2

Y’

 

+

0

-

0

+

 

Y

3/2

單增

極大值

單減

極小值

單增

3

-----------(6分)

(3)證明:

---------------------(12分)

 

 21.解:(1)

   當(dāng)

   當(dāng),適合上式,

   -------------------------------(4分)

   (2)

   ①

, ②

兩式相減,得

=

=

=

--------------------------------(8分)

(3)證明,由

=

成立---------------------------------------------------(12分)

 

22.解:(1)由題意可知直線l的方程為,

因?yàn)橹本與圓相切,所以=1,既

從而----------------------------------------------------------------------------------------(6分)

(2)設(shè)

---------------------------------(8分)

j當(dāng)

k當(dāng)

故舍去。

綜上所述,橢圓的方程為------------------------------------(14分)

 

 

 


同步練習(xí)冊(cè)答案