19. 如圖所示.在四棱錐S-ABCD中.側(cè)棱SA=SB=SC=SD.低面ABCD是正方形.AC與交 于點(diǎn)O. (1)求證:AC⊥平面SBD, (2)當(dāng)點(diǎn)P在線段MN上移動(dòng)時(shí).試判斷EP與AC的位置關(guān)系.并證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

如圖所示,在正三棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為是棱的中點(diǎn).

 
(Ⅰ)求證:平面;

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

(本小題滿分12分)

如圖所示,在正三棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,是棱的中點(diǎn).

 
(Ⅰ)求證:平面;

(Ⅱ)求二面角的大。籟來(lái)源:學(xué)科網(wǎng)ZXXK]

(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

() (本小題滿分12分)如圖所示,在直三棱柱中,,,.(Ⅰ)在棱上確定一點(diǎn),使得平面;(Ⅱ)求二面角的余弦值.

查看答案和解析>>

(本小題滿分12分)
如圖所示,在正三棱柱中,,的中點(diǎn),在線段上且

(I)證明:;
(II)求二面角的大。

查看答案和解析>>

(本小題滿分12分)

如圖所示,在直棱柱中,,,的中點(diǎn).

(1)求證:;

(2)求證:;

(3)在上是否存在一點(diǎn),使得,若存在,試確定的位置,并判斷與平面是否垂直?若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

一、選擇題:每小題5分,共60分

BCCAB    ACADB    BB

二、填空題:每小題4分,共16分

13.,甲,甲:

三、解答題:本題滿分共74分,解答應(yīng)有必要的文字說(shuō)明,解答過(guò)程或演算步驟

17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用4’表示)為(2,3),(2,4),(2,4),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,3),(4’,4)共12種不同情況--------(4分)

 

(2)甲抽到3,乙抽到的牌只能是2,4,4’

  因此乙抽到的牌的數(shù)字大于3的概率是;------------------------(6分)

 

(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(4’,2),(4’,3)共5種,所以,甲勝的概率是,乙獲勝的與甲獲勝是對(duì)立事件,所以乙獲勝的概率是,

   此游戲不公平------------------(12分)

18.解:(1)由題意知.

     (5分)

  ,

  -----------------(7分)

 

(2)

-------------------------------------(9分)

---------------(12分)

   19.解:(1)低面ABCD是正方形,O為中心,AC⊥BD

      又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)

www.ks5u.com     (2)連接

      

      

       又由(1)知,AC⊥BD

       且AC⊥平面SBD,

       所以,AC⊥SB---------------(8分)

       ,且EMNE=E

       ⊥平面EMN-------------(10分)

       因此,當(dāng)P點(diǎn)在線段MN上移動(dòng)時(shí),總有AC⊥EP-----(12分)

 

  20.解:

      -------------------------------(2分)

      (2)

       則

       令--------------------------------(4分)

       當(dāng)x在區(qū)間[-1,2]上變化時(shí),y’,y的變化情況如下表:

     

X

-1

1

(1,2)

2

Y’

 

+

0

-

0

+

 

Y

3/2

單增

極大值

單減

極小值

單增

3

-----------(6分)

(3)證明:

---------------------(12分)

 

 21.解:(1)

   當(dāng)

   當(dāng),適合上式,

   -------------------------------(4分)

   (2),

   ①

, ②

兩式相減,得

=

=

=

--------------------------------(8分)

(3)證明,由

=

成立---------------------------------------------------(12分)

 

22.解:(1)由題意可知直線l的方程為,

因?yàn)橹本與圓相切,所以=1,既

從而----------------------------------------------------------------------------------------(6分)

(2)設(shè)

---------------------------------(8分)

j當(dāng)

k當(dāng)

故舍去。

綜上所述,橢圓的方程為------------------------------------(14分)

 

 

 


同步練習(xí)冊(cè)答案