所以在上恒成立 -------------------3分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問中,若對(duì)任意不等式恒成立,問題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),;

當(dāng)b>2時(shí),;             ............8分

問題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

(請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對(duì)任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,得:

,

第三問中,由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

解:(1)由 即

(2),得:

,

(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí),

當(dāng)命題p為假,命題q為真時(shí),,

所以

 

查看答案和解析>>

有以下四個(gè)命題:
①兩直線m,n與平面α所成的角相等的充要條件是m∥n;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個(gè)函數(shù)y=x-1,y=x
1
3
,y=x
1
2
,y=x3
,其中在R上是增函數(shù)的函數(shù)有3個(gè).
其中真命題的序號(hào)是
②③
②③
.(漏填、多填或錯(cuò)填均不得分)

查看答案和解析>>

有以下四個(gè)命題:
①兩直線m,n與平面α所成的角相等的充要條件是mn;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個(gè)函數(shù)y=x-1,y=x
1
3
,y=x
1
2
,y=x3
,其中在R上是增函數(shù)的函數(shù)有3個(gè).
其中真命題的序號(hào)是______.(漏填、多填或錯(cuò)填均不得分)

查看答案和解析>>


同步練習(xí)冊(cè)答案