.切點坐標(biāo)為(1.) ---3分 查看更多

 

題目列表(包括答案和解析)

(1)若任意直線l過點F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C交于兩個不同的點A,B,分別過點A,B作C的切線,兩切線交于點M,證明:點M的縱坐標(biāo)是一個定值,并求出這個定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實數(shù)a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e為無理數(shù),約為2.71828).

查看答案和解析>>

(1)若任意直線l過點F(0,1),且與函數(shù)f(x)=數(shù)學(xué)公式的圖象C交于兩個不同的點A,B,分別過點A,B作C的切線,兩切線交于點M,證明:點M的縱坐標(biāo)是一個定值,并求出這個定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實數(shù)a的取值范圍;
(3)求證:數(shù)學(xué)公式,(其中e為無理數(shù),約為2.71828).

查看答案和解析>>

(1)若任意直線l過點F(0,1),且與函數(shù)f(x)=的圖象C交于兩個不同的點A,B,分別過點A,B作C的切線,兩切線交于點M,證明:點M的縱坐標(biāo)是一個定值,并求出這個定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實數(shù)a的取值范圍;
(3)求證:,(其中e為無理數(shù),約為2.71828).

查看答案和解析>>

設(shè)P(t,0)為x軸上的動點,過P作拋物線y=x2+1的兩條切線,切點分別為A、B
(1)求線段AB中點M的軌跡方程;
(2)求證:直線AB過定點,并求出該定點坐標(biāo).
(3)設(shè)△PAB的面積為S,求
S|OP|
的最小值.

查看答案和解析>>

設(shè)P(t,0)為x軸上的動點,過P作拋物線y=x2+1的兩條切線,切點分別為A、B
(1)求線段AB中點M的軌跡方程;
(2)求證:直線AB過定點,并求出該定點坐標(biāo).
(3)設(shè)△PAB的面積為S,求的最小值.

查看答案和解析>>


同步練習(xí)冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�