已知四棱錐的底面為直角梯形.底面.∥...點.分別在棱.上.且平面. 查看更多

 

題目列表(包括答案和解析)

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為,,,則( 。

A.           B.                  C.              D.

查看答案和解析>>

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為,,則( 。

A.           B.                  C.              D.

查看答案和解析>>

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為,,則(  )

A.           B.                  C.              D.

查看答案和解析>>

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為,,則( 。

A.           B.                  C.              D.

查看答案和解析>>

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為,,,則(  )

A.           B.                  C.              D.

查看答案和解析>>

1.解析:,故選A。

2.解析:∵

,

故選B。

3.解析:由,得,此時,所以,,故選C。

4.解析:顯然,若共線,則共線;若共線,則,即,得,∴共線,∴共線是共線的充要條件,故選C。

5.解析:設(shè)公差為,由題意得,;,解得,故選C。

6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

7.解析:∵、為正實數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數(shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,此函數(shù)的最小值為,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當(dāng)時,圓面被分成2塊,涂色方法有20種;②當(dāng)時,圓面被分成3塊,涂色方法有60種;

③當(dāng)時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點時,取得最大值5。

學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時,,又時,滿足上式,因此,,

。

學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長為,連,取的中點,連,∵的中點,∴,∴或其補角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為

學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點的準(zhǔn)線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關(guān)于軸對稱的兩點且做出圖形如右圖,其中為點到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

,,………4分

(Ⅱ)∵,∴,∴,………………………6分

又∵,∴,∴,………………………8分

!10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為!12分

(理)∵,,!9分

的分布列如下表:

0

1

2

3

的數(shù)學(xué)期望。……………………12分

19.(12分)解析:(Ⅰ)時,

,,

    

得,   ………3分

 

 

+

0

0

+

遞增

極大值

遞減

極小值

遞增

,      ………………………6分

(Ⅱ)在定義域上是增函數(shù),

恒成立,即 

   ………………………9分

(當(dāng)且僅當(dāng)時,

               

 ………………………4分

學(xué)科網(wǎng)(Zxxk.Com)              

20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分

(Ⅱ)∵平面,∴,∴為二面角的平面角,………………………6分

,,∴,又∵平面,∴,∴二面角的正切值的大小為。………………………8分

(Ⅲ)過點,交于點,∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點的坐標(biāo)分別是,,,∴,設(shè),∵平面,∴,∴,取,∴,∴!4分

(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為。………………………8分

(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線軸的交點為,過點


同步練習(xí)冊答案