題目列表(包括答案和解析)
(本題13分)已知函數(shù)
(1)已知一直線經(jīng)過原點(diǎn)且與曲線相切,求的直線方程;
(2)若關(guān)于的方程有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍。
已知函數(shù)在R上滿足,則曲線在點(diǎn)處的切線方程是
A. B. C. D.
已知關(guān)于的方程有實(shí)根,復(fù)數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離為
A.2 B.4 C. D. 8
已知函數(shù)在點(diǎn)處連續(xù),則常數(shù)的值是
A.2 B.3 C.4 D.5
五月四日,高三年級(jí)一班和二班之間將進(jìn)行一次有關(guān)環(huán)保問題的演講比賽(a talk show on environment protection)。此前,二班邀請(qǐng)清華大學(xué)的Dr Li做相關(guān)內(nèi)容的報(bào)告。
假定你是二班的班長(zhǎng),請(qǐng)你草擬一個(gè)有關(guān)報(bào)告會(huì)的口頭通知。
注意:1.內(nèi)容應(yīng)包括提示及表格內(nèi)的全部要點(diǎn);
2.詞數(shù)在100左右;
3.開頭已為你寫好。
報(bào)告內(nèi)容 |
近些年北京的環(huán)境問題及已取得的進(jìn)步 |
地 點(diǎn) |
教學(xué)樓三樓會(huì)議廳(auditorium) |
時(shí) 間 |
四月三十日,星期三下午 2:00 |
目 的 |
幫助大家收集信息,為演講做好準(zhǔn)備 |
參加人員 |
全班同學(xué) |
其他安排 |
會(huì)后議論 |
1.解析:,故選A。
2.解析:抽取回族學(xué)生人數(shù)是,故選B。
3.解析:由,得,此時(shí),所以,,故選C。
4.解析:∵∥,∴,∴,故選C。
5.解析:設(shè)公差為,由題意得,;,解得或,故選C。
6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.
7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.
8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。
9.解析:∵
,∴此函數(shù)的最小正周期是,故選C。
10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。
11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A
12.解析:如圖,①當(dāng)或時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)或時(shí),圓面被分成3塊,涂色方法有60種;
③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。
13.解析:將代入結(jié)果為,∴時(shí),表示直線右側(cè)區(qū)域,反之,若表示直線右側(cè)區(qū)域,則,∴是充分不必要條件。
14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,。
15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵為的中點(diǎn),∴∥,∴或其補(bǔ)角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。
16.解析:∵,∴,∵點(diǎn)為的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。
17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分
∴,,………4分
(Ⅱ)∵,,∴,∴,………………………6分
又∵,∴,∴,………………………8分
∴。………………………10分
18.解析:(Ⅰ)∵,∴;……………………理3文4分
(Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為!12分
19.(12分)解析:(Ⅰ)∵,∴,
,,……………3分
(Ⅱ)∵,∴,
∴,
又,∴數(shù)列自第2項(xiàng)起是公比為的等比數(shù)列,………………………6分
∴,………………………8分
(Ⅲ)∵,∴,………………10分
∴!12分
20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分
(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分
,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分
(Ⅲ)過點(diǎn)做∥,交于點(diǎn),∵平面,∴為在平面內(nèi)的射影,∴為與平面所成的角,………………………10分
∵,∴,又∵∥,∴和與平面所成的角相等,∴與平面所成角的正切值為!12分
解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分
(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分
(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分
21.解析:(Ⅰ)設(shè)拋物線方程為,將代入方程得
所以拋物線方程為!2分
由題意知橢圓的焦點(diǎn)為、。
設(shè)橢圓的方程為,
∵過點(diǎn),∴,解得,,,
∴橢圓的方程為!5分
(Ⅱ)設(shè)的中點(diǎn)為,的方程為:,
以為直徑的圓交于兩點(diǎn),中點(diǎn)為。
設(shè),則
∵
………………………8分
∴
………………………10分
當(dāng)時(shí),,,
此時(shí),直線的方程為!12分
22.(12分)解析:(Ⅰ)∵是偶函數(shù),∴,
又∵∴,,………………………2分
由得,,
∵時(shí),;時(shí),;時(shí),;∴時(shí),函數(shù)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com