= kx -2.在區(qū)間上恒成立.求k的取值范圍. 溫州中學(xué)2008學(xué)年第二學(xué)期期中考試 高二數(shù)學(xué)答案題號(hào)12345678910答案CCDDABABAD 查看更多

 

題目列表(包括答案和解析)

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(0,1)和(1,4),且對(duì)于任意的實(shí)數(shù)x,不等式f(x)≥4x恒成立.

(1)求函數(shù)f(x)的表達(dá)式;

(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a>0),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a、b的值;
(Ⅱ)若不等式f(x)-kx≥0在x∈(0,+∞)時(shí)恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a>0),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)數(shù)學(xué)公式
(Ⅰ)求a、b的值;
(Ⅱ)若不等式f(x)-kx≥0在x∈(0,+∞)時(shí)恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)方程數(shù)學(xué)公式有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(0,1)和(1,4),且對(duì)于任意的實(shí)數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f′(x)是減函數(shù),且f′(x)>0,設(shè)x0∈(0,+∞),y=kx+m是曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程,并設(shè)函數(shù)g(x)=kx+m.

(1)用x0f(x0)、f′(x0)表示m;

(2)證明當(dāng)x0∈(0,+∞)時(shí),g(x)≥f(x);

(3)若關(guān)于x的不等式x2+1≥ax+b上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b 所滿(mǎn)足的關(guān)系.

查看答案和解析>>


同步練習(xí)冊(cè)答案