⑴若 , =m , mn, 則n或n, 查看更多

 

題目列表(包括答案和解析)

設(shè)為兩個(gè)不同的平面,m、n為兩條不同的直線,且m,n,有如下的兩個(gè)命題:p:若//,則m//n;q:若mn,則.那么

 A. “p或q”是假命題                              B. “p且q”是真命題

C. “非p或q” 是假命題                          D. “非p且q”是真命題

 

查看答案和解析>>

設(shè)為兩個(gè)不同的平面,m、n為兩條不同的直線,且m,n,有如下的兩個(gè)命題:p:若//,則m//n;q:若mn,則.那么

A.“p或q”是假命題B.“p且q”是真命題
C.“非p或q”是假命題D.“非p且q”是真命題

查看答案和解析>>

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過A、B點(diǎn)作直線l1:x=-2的垂線,對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問是否存在實(shí)數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請(qǐng)說明理由.
進(jìn)一步思考問題:若上述問題中直線、點(diǎn)F(-c,0)、曲線C:,則使等式S22=λS1S3成立的λ的值仍保持不變.請(qǐng)給出你的判斷______ (填寫“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過A、B點(diǎn)作直線l1:x=-2的垂線,對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問是否存在實(shí)數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請(qǐng)說明理由.
進(jìn)一步思考問題:若上述問題中直線l1:x=-
a2
c
、點(diǎn)F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請(qǐng)給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是
④對(duì)于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算⊕如下:
當(dāng)m,n奇偶性相同時(shí),m⊕n=m+n;當(dāng)m,n奇偶性不同時(shí),m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個(gè)數(shù)是15個(gè).
上述說法正確的是   

查看答案和解析>>


同步練習(xí)冊(cè)答案