(2)令. 查看更多

 

題目列表(包括答案和解析)

,若對是真命題,則實數(shù)的取值范圍是    

 

查看答案和解析>>

 令,,若在集合中,給取一個值,三數(shù)中最大的數(shù)是,則的值所在范圍是                  (    )

A. B.   C.  D.

 

查看答案和解析>>

 令,,若在集合中,給取一個值,三數(shù)中最大的數(shù)是,則的值所在范圍是                  (    )

    A. B.   C.  D.

 

查看答案和解析>>

,若對是真命題,則實數(shù)的取值范圍是    

查看答案和解析>>

,則a,b,c的大小關系為   

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學科網(wǎng)(Zxxk.Com)

11.A     12.D學科網(wǎng)(Zxxk.Com)

【解析】學科網(wǎng)(Zxxk.Com)

1.,所以選B.學科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學科網(wǎng)(Zxxk.Com)

3.,所以選學科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學科網(wǎng)(Zxxk.Com)

5.,所以選C.學科網(wǎng)(Zxxk.Com)

6.,所以選B.學科網(wǎng)(Zxxk.Com)

7.,所以選D.學科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學科網(wǎng)(Zxxk.Com)

9.將左移個單位得,所以選A.學科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點,所以選B.

11.如圖,設,則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點是:共6個點,故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設,又,

       當面積最大時,.點到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設兩年后出口額恰好達到危機前出口額的事件為,則

       (2)設兩年后出口額超過危機前出口額的事件為,則

19.(1)設交于點

             

             

             

              從而,即,又,且

              平面為正三角形,的中點,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設的中點,連接,則

              平面,過點,連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

<object id="2a2th"><thead id="2a2th"><optgroup id="2a2th"></optgroup></thead></object>
        <form id="2a2th"></form>
        <mark id="2a2th"><em id="2a2th"><ol id="2a2th"></ol></em></mark>

         

                      時,時,

                      處取得極小值

                                                 ③

                由式①、②、③聯(lián)立得:

               

               (2)

                   ∴當時,上單調遞減,

                當時,

                      當時,在[2,3]上單調遞增,

        22.(1)由

                   ∴橢圓的方程為:

        (2)由

              

               又

        設直線的方程為:

                      由此得.                                   ①

                      設與橢圓的交點為,則

                      由

                      ,整理得

                      ,整理得

                      時,上式不成立,          ②

                由式①、②得

               

                ∴取值范圍是

         

         

         


        同步練習冊答案