(1)求.并寫出的表達式, 查看更多

 

題目列表(包括答案和解析)

設(shè)關(guān)于x的函數(shù)的最小值為

⑴寫出的表達式;w.w.w.k.s.5.u.c.o.m        

⑵試確定能使值,并求出此時函數(shù)的最大值.

查看答案和解析>>

設(shè)0<a<1,,
(Ⅰ)求f(x)的表達式,并指出其奇偶性、單調(diào)性(不必寫出證明過程);
(Ⅱ)解關(guān)于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)當n∈N時,比較f(n)與n的大。
(文)若f(x)-4的值僅在x<2時取負數(shù),求a的取值范圍.

查看答案和解析>>

已知向量,,函數(shù)
(1)求f(x)的表達式;
(2)寫出函數(shù)f(x)的周期并求函數(shù)f(x)的最大值.

查看答案和解析>>

設(shè)0<a<1,數(shù)學(xué)公式,
(Ⅰ)求f(x)的表達式,并指出其奇偶性、單調(diào)性(不必寫出證明過程);
(Ⅱ)解關(guān)于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)當n∈N時,比較f(n)與n的大小.
(文)若f(x)-4的值僅在x<2時取負數(shù),求a的取值范圍.

查看答案和解析>>

已知函數(shù),設(shè)

.  

(1)猜測并直接寫出的表達式;此時若設(shè),且關(guān)于的函數(shù)在區(qū)間上的最小值為,則求的值;

(2)設(shè)數(shù)列為等比數(shù)列,數(shù)列滿足,若 ,其中,則

①當時,求;

②設(shè)為數(shù)列的前項和,若對于任意的正整數(shù),都有,求實數(shù)的取值范圍.

 

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點,所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點是:共6個點,故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又,

       當面積最大時,.點到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達到危機前出口額的事件為,則

       (2)設(shè)兩年后出口額超過危機前出口額的事件為,則

19.(1)設(shè)交于點

             

             

             

              從而,即,又,且

              平面為正三角形,的中點,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點,連接,則,

              平面,過點,連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

<form id="zfenr"><dfn id="zfenr"><pre id="zfenr"></pre></dfn></form>
<menuitem id="zfenr"><tr id="zfenr"></tr></menuitem><option id="zfenr"><dfn id="zfenr"></dfn></option>

       

                    時,時,

                    處取得極小值

                                               ③

              由式①、②、③聯(lián)立得:

             

             (2)

                 ∴當時,上單調(diào)遞減,

              當時,

                    當時,在[2,3]上單調(diào)遞增,

      22.(1)由

                 ∴橢圓的方程為:

      (2)由

            

             又

      設(shè)直線的方程為:

                    由此得.                                   ①

                    設(shè)與橢圓的交點為,則

                    由

                    ,整理得

                    ,整理得

                    時,上式不成立,          ②

              由式①、②得

             

              ∴取值范圍是

       

       

       


      同步練習(xí)冊答案