(1)證明:平面, 查看更多

 

題目列表(包括答案和解析)

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點(diǎn).
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達(dá)式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個(gè)區(qū)域.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿(mǎn)足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB

(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過(guò)P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過(guò)原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點(diǎn).
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達(dá)式并給出證明;
(2)求證:這n條直線把平面分成數(shù)學(xué)公式個(gè)區(qū)域.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BD⊥BA,BD=
1
2
AE=2
,O、M分別為CE、AB的中點(diǎn).
(I)求證:OD平面ABC;
(II)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個(gè)單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫(huà)可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又

       當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則

       (2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則

              平面,過(guò)點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

  • <menu id="rgwxw"><rt id="rgwxw"></rt></menu>

     

                  時(shí),時(shí),

                  處取得極小值

                                             ③

            由式①、②、③聯(lián)立得:

           

           (2)

               ∴當(dāng)時(shí),上單調(diào)遞減,

            當(dāng)時(shí),

                  當(dāng)時(shí),在[2,3]上單調(diào)遞增,

    22.(1)由

               ∴橢圓的方程為:

    (2)由,

          

           又

    設(shè)直線的方程為:

                  由此得.                                   ①

                  設(shè)與橢圓的交點(diǎn)為,則

                  由

                  ,整理得

                  ,整理得

                  時(shí),上式不成立,          ②

            由式①、②得

           

            ∴取值范圍是

     

     

     


    同步練習(xí)冊(cè)答案