A.(1.2] B.[0.+) 查看更多

 

題目列表(包括答案和解析)

設(shè)集合,則

A.(1,2]B.[0,+
C.D.[0,2]

查看答案和解析>>

設(shè)集合,則

A.(1,2]                               B.[0,+

C.                          D.[0,2]

查看答案和解析>>

設(shè)集合,則
A.(1,2]B.[0,+
C.D.[0,2]

查看答案和解析>>

精英家教網(wǎng)A.(不等式選講選做題)若不等式|x+1|+|x-2|<a無實(shí)數(shù)解,則a的取值范圍是
 

B.(幾何證明選做題)如圖,⊙O的直徑AB=6cm,P是AB延長線上的一點(diǎn),過P點(diǎn)作⊙O的切線,切點(diǎn)為C,連接AC,若∠CPA=30°,PC=
 

C.(極坐標(biāo)參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
(a為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個數(shù)為
 
個.

查看答案和解析>>

精英家教網(wǎng)A.(不等式選講選做題)如果存在實(shí)數(shù)x使不等式|x+1|-|x-2|<k成立,則實(shí)數(shù)k的取值范圍是
 

B.(幾何證明選講選做題)如圖,圓O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,CD=2
7
,AB=BC=3
,則AC的長為
 

C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線
ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點(diǎn)是:共6個點(diǎn),故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又,

       當(dāng)面積最大時,.點(diǎn)到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則

       (2)設(shè)兩年后出口額超過危機(jī)前出口額的事件為,則

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則,

              平面,過點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

 

              時,時,

              處取得極小值

                                         ③

        由式①、②、③聯(lián)立得:

       

       (2)

           ∴當(dāng)時,上單調(diào)遞減,

        當(dāng)時,

              當(dāng)時,在[2,3]上單調(diào)遞增,

22.(1)由

           ∴橢圓的方程為:

(2)由

      

       又

設(shè)直線的方程為:

              由此得.                                   ①

              設(shè)與橢圓的交點(diǎn)為,則

              由

              ,整理得

              ,整理得

              時,上式不成立,          ②

        由式①、②得

       

        ∴取值范圍是

 

 

 


同步練習(xí)冊答案