1.設(shè)集合.則 查看更多

 

題目列表(包括答案和解析)

設(shè)集合,則=

       A.                        B.                    C.                  D.

查看答案和解析>>

設(shè)集合,則滿足條件

的集合P個數(shù)( )

A.1        B.3    C.4        D.8

查看答案和解析>>

設(shè)集合,則的取值范圍是

(A)                (B)      

(C)            (D)  

查看答案和解析>>

設(shè)集合,則        (     )

   A.    B.   C.   D.

查看答案和解析>>

設(shè)集合,則           (     )

A.                               B.

C.                                          D.

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點,所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點是:共6個點,故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又

       當(dāng)面積最大時,.點到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達到危機前出口額的事件為,則

       (2)設(shè)兩年后出口額超過危機前出口額的事件為,則

19.(1)設(shè)交于點

             

             

             

              從而,即,又,且

              平面為正三角形,的中點,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點,連接,則,

              平面,過點,連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

<label id="sdmj0"><progress id="sdmj0"><track id="sdmj0"></track></progress></label>

 

              時,時,

              處取得極小值

                                         ③

        由式①、②、③聯(lián)立得:

       

       (2)

           ∴當(dāng)時,上單調(diào)遞減,

        當(dāng)時,

              當(dāng)時,在[2,3]上單調(diào)遞增,

22.(1)由

           ∴橢圓的方程為:

(2)由

      

       又

設(shè)直線的方程為:

              由此得.                                   ①

              設(shè)與橢圓的交點為,則

              由

              ,整理得

              ,整理得

              時,上式不成立,          ②

        由式①、②得

       

        ∴取值范圍是

 

 

 


同步練習(xí)冊答案
  • <span id="sdmj0"><dfn id="sdmj0"><p id="sdmj0"></p></dfn></span>
    <rt id="sdmj0"></rt>
  • <li id="sdmj0"><progress id="sdmj0"></progress></li>
    <noscript id="sdmj0"><th id="sdmj0"></th></noscript>
      1. <span id="sdmj0"></span>
        <td id="sdmj0"></td>