21.設函數(shù).若曲線的斜率最小的切線與直線平行.求: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

設函數(shù),曲線在點處的切線方程

(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。

(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.

(3) 將函數(shù)的圖象向左平移一個單位后與拋物線為非0常數(shù))的圖象有幾個交點?(說明理由)

 

查看答案和解析>>

(本小題滿分12分)

設函數(shù),曲線在點(2,(2))處的切線方程為

(Ⅰ)求的解析式;

(Ⅱ)若對一切恒成立,求的取值范圍;

(Ⅲ)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為一值,并求此定值。

 

查看答案和解析>>

 

 (本小題滿分12分)設函數(shù),其中,曲線在點處的切線方程為

(1)若的極值點,求的解析式

(2)若過點可作曲線的三條不同切線,求的取值范圍。

 

查看答案和解析>>

(本小題滿分12分)
設函數(shù),曲線在點處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線為非0常數(shù))的圖象有幾個交點?(說明理由)

查看答案和解析>>

(本小題滿分12分)
設函數(shù),曲線在點(2,(2))處的切線方程為
(Ⅰ)求的解析式;
(Ⅱ)若對一切恒成立,求的取值范圍;
(Ⅲ)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為一值,并求此定值。

查看答案和解析>>

2009年曲靖一中高考沖刺卷文科數(shù)學(一)學科網(wǎng)(Zxxk.Com)

1.B   2.C   3.A   4.A   5.A   6.D   8.C   9.B   10.D   11.C   12.A學科網(wǎng)(Zxxk.Com)

【解析】學科網(wǎng)(Zxxk.Com)

1.依題意得,所以),因此選學科網(wǎng)(Zxxk.Com)

2.依題意得在第二象限,所以,故選C。學科網(wǎng)(Zxxk.Com)

3.學科網(wǎng)(Zxxk.Com)

    學科網(wǎng)(Zxxk.Com)

4.過(-1,1)和(0,3)的直線方程為,令,可得在軸的截距為,故選A學科網(wǎng)(Zxxk.Com)

5.如圖。學科網(wǎng)(Zxxk.Com)

故選A

6.設

故選D

7.設等差數(shù)列的首項為,公差,因為成等比數(shù)列,所以,即,解得,故選D

8.由,所以之比為2,設,,又點在圓上,所以,即+-4,化簡得=16,故選C

9.長方體的中心即為球心,設球半徑為,則

于是兩點的球面距離為故選B

10.畫出

   在內的圖象如圖

學科網(wǎng)(Zxxk.Com)

已知

,且兩函數(shù)在上均為增函數(shù),因此,兩曲線在內有一交點,故的大小關系與的取值有關,故選D。

11.。而樣本總容量為20。

   所以植物油類食品應抽取樣本數(shù)為,果蔬類食品應抽取樣本數(shù)為,故,植物油類與果蔬類食品抽取的樣本數(shù)之和為2+4=6,故應選C。

12.又因為對任意實數(shù),都有,

當且僅當時,上述等號成立,即當對,有最小值2,故選A。

二、填空題

13.5.線性規(guī)劃問題先作出可行域,注意本題已知最優(yōu)的待定參數(shù)的特點,可考慮特殊的交點,再驗證由題設可知

,應用運動變化的觀點驗證滿足為所求。

14.7.由題意得

因此A是鈍角,

15.22,連接,的周章為

16.當時,,取到最小值,因次,是對稱軸:②當時,因此不是對稱中心;③由可得上不是增函數(shù);④把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號是①。

三、解答題

17.(1)上單調遞增,上恒成立,即上恒成立,即實數(shù)的取值范圍

(2)由題設條件知上單調遞增。

,即

的解集為

的解集為

18.(1)過連接

側面

。

是邊長為2的等邊三角形。又點,在底面上的射影,

(法一)(2)就是二面角的平面角,都是邊長為2的正三角形,即二面角的大小為45°

(3)取的中點為連接的中點,,又,且在平面上,又的中點,線段的長就是到平面的距離在等腰直角三角形中,,,即到平面的距離是

(法二)(2),軸、軸、軸建立空間直角坐標系,則點設平面的法向量為,則,解得,,平面的法向量

向量所成角為45°故二面角的大小為45°,

(3)由,的中點設平面的法向量為,則,解得到平面的距離為

19.(1)每天不超過20人排隊結算的概率為:

(2)每天超過15分排隊結算的概率為,一周7天中,沒有出現(xiàn)超過15分排隊結算的概率為

一周7天中,有一天出現(xiàn)超過15人排隊結算的概率為

一周7天中,有兩天出現(xiàn)超過15人排隊結算的概率為

一周7天中,有3天以上(含3天)出現(xiàn)超過15人跑隊結算的概率為;

所以,該商場需要增加結算窗口。

20.(1)由已知

因此是首項為1,公差為1的等差數(shù)列

(2)由(1)得

①式兩邊同乘以3,得

①式-③式得,

21.(1)

即當取得最小值 因斜率最小的切線與平行,即讀切線的斜率為-12,所以,即,由題設條件知

(2)由(1)知,因此

,解得時,上為增函數(shù)。當時,上為減函數(shù)。

時,,故上為增函數(shù)。

由此可見,函數(shù)的單調遞增區(qū)間為()和,單調遞減區(qū)間為

22.(1)連接,由題意知:

學科網(wǎng)(Zxxk.Com)

為圓的半徑,

為焦點的橢圓上,即

的軌跡方程為

(2)由,  消去得1

  由

,有

設點到直線的距離為,則

,即時,等號成立。

面積的最大值為3

www.ks5u.com

 


同步練習冊答案