題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
2009年曲靖一中高考沖刺卷文科數(shù)學(一)
1.B 2.C 3.A 4.A 5.A 6.D 8.C 9.B 10.D 11.C 12.A
【解析】
1.依題意得,所以故且),因此選
2.依題意得又在第二象限,所以,,故選C。
3. 且
4.過(-1,1)和(0,3)的直線方程為,令,可得在軸的截距為,故選A
5.如圖。
故選A
6.設
則
故選D
7.設等差數(shù)列的首項為,公差,因為成等比數(shù)列,所以,即,解得,故選D
8.由,所以分之比為2,設(,則,又點在圓上,所以,即+-4,化簡得=16,故選C
9.長方體的中心即為球心,設球半徑為,則
于是兩點的球面距離為故選B
10.畫出和
在內(nèi)的圖象如圖
已知
,且兩函數(shù)在上均為增函數(shù),因此,兩曲線在內(nèi)有一交點,故與的大小關系與的取值有關,故選D。
11.。而樣本總容量為20。
所以植物油類食品應抽取樣本數(shù)為,果蔬類食品應抽取樣本數(shù)為,故,植物油類與果蔬類食品抽取的樣本數(shù)之和為2+4=6,故應選C。
12.又因為對任意實數(shù),都有即,
當且僅當即時,上述等號成立,即當對,有最小值2,故選A。
二、填空題
13.5.線性規(guī)劃問題先作出可行域,注意本題已知最優(yōu)的待定參數(shù)的特點,可考慮特殊的交點,再驗證由題設可知
,應用運動變化的觀點驗證滿足為所求。
14.7.由題意得又
因此A是鈍角,
15.22,連接,的周章為
16.當時,,取到最小值,因次,是對稱軸:②當時,因此不是對稱中心;③由可得故在上不是增函數(shù);④把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號是①。
三、解答題
17.(1)在上單調(diào)遞增,在上恒成立,即在上恒成立,即實數(shù)的取值范圍
(2)由題設條件知在上單調(diào)遞增。
由得,即
即的解集為
又的解集為
18.(1)過作子連接
側面
。
故是邊長為2的等邊三角形。又點,又是在底面上的射影,
(法一)(2)就是二面角的平面角,和都是邊長為2的正三角形,又即二面角的大小為45°
(3)取的中點為連接又為的中點,,又,且在平面上,又為的中點,又線段的長就是到平面的距離在等腰直角三角形中,,,,即到平面的距離是
(法二)(2),以為軸、軸、軸建立空間直角坐標系,則點設平面的法向量為,則,解得,取則,平面的法向量
向量所成角為45°故二面角的大小為45°,
(3)由,的中點設平面的法向量為,則,解得 則故到平面的距離為
19.(1)每天不超過20人排隊結算的概率為:
(2)每天超過15分排隊結算的概率為,一周7天中,沒有出現(xiàn)超過15分排隊結算的概率為
一周7天中,有一天出現(xiàn)超過15人排隊結算的概率為
一周7天中,有兩天出現(xiàn)超過15人排隊結算的概率為
一周7天中,有3天以上(含3天)出現(xiàn)超過15人跑隊結算的概率為;
所以,該商場需要增加結算窗口。
20.(1)由已知得
又因此是首項為1,公差為1的等差數(shù)列
(2)由(1)得
①式兩邊同乘以3,得②
①式-③式得,
21.(1)
即當時取得最小值 因斜率最小的切線與平行,即讀切線的斜率為-12,所以,即,由題設條件知
(2)由(1)知,因此
令,解得當時,故在上為增函數(shù)。當時,故在上為減函數(shù)。
當時,,故在上為增函數(shù)。
由此可見,函數(shù)的單調(diào)遞增區(qū)間為()和,單調(diào)遞減區(qū)間為。
22.(1)連接,由題意知:
圓為圓的半徑,
又
點在為焦點的橢圓上,即
點的軌跡方程為
(2)由, 消去得1
由得
設則,有
設點到直線的距離為,則
當,即時,等號成立。
面積的最大值為3
www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com