二面角的余弦值為.解法二: 查看更多

 

題目列表(包括答案和解析)

在直三棱柱ABC-A1B1C1中,AB=AC=2,AB⊥AC,D為BB1的中點(diǎn).二面角B-A1C1-D的大小為α,試建立適當(dāng)?shù)目臻g直角坐標(biāo)系,用向量法分別解答以下問(wèn)題:

(Ⅰ)當(dāng)AA1=2時(shí),求:

(ⅰ)所成角φ的余弦值

(ⅱ)C1D與平面A1BC1所成角的正弦值

(Ⅱ)當(dāng)棱柱的高變化時(shí),求cosα的最小值.

查看答案和解析>>

已知四棱錐的底面為直角梯形,,底面,且,,的中點(diǎn)。

(1)證明:面;

(2)求所成的角;

(3)求面與面所成二面角的余弦值.

【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

(2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個(gè)法向量,然后求出兩法向量的夾角即可.

 

查看答案和解析>>

如圖,在三棱錐中,平面平面,,,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,再由題設(shè)條件知道可以分別以、, 軸建立直角坐標(biāo)系得,,,,,

故平面的法向量,故點(diǎn)B到平面的距離

第二問(wèn)中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面

  再由題設(shè)條件知道可以分別以、, 軸建立直角坐標(biāo)系,得,,,,

,故平面的法向量

,故點(diǎn)B到平面的距離

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>


同步練習(xí)冊(cè)答案