題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設,證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、
1.C 2.D 3.B 4.D 5.D 6.B 7.D 8.A 9.A 10.C
11.D 12.A
1~11.略
12.解:,
在是減函數(shù),由,得,,故選A.
二、
13.0.8 14. 15. 16.①③
三、
17.解:(1)
的單調遞增區(qū)間為
(2)
18.解:(1)當時,有種坐法,
,即,
或舍去.
(2)的可能取值是0,2,3,4
又
的概率分布列為
0
2
3
4
則.
19.解:(1)時,,
又 ,
是一個以2為首項,8為公比的等比數(shù)列
(2)
最小正整數(shù).
20.解法一:
(1)設交于點
平面.
作于點,連接,則由三垂線定理知:是二面角的平面角.
由已知得,
,
∴二面角的大小的60°.
(2)當是中點時,有平面.
證明:取的中點,連接、,則,
,故平面即平面.
又平面,
平面.
解法二:由已知條件,以為原點,以、、為軸、軸、軸建立空間直角坐標系,則
(1),
,設平面的一個法向量為,
則取
設平面的一個法向量為,則取.
二面角的大小為60°.
(2)令,則,
,
由已知,,要使平面,只需,即
則有,得當是中點時,有平面.
21.解:(1)由條件得,所以橢圓方程是.
(2)易知直線斜率存在,令
由
由,
即得
,
即
得
將代入
有
22.解:(1)
在上為減函數(shù),時,恒成立,
即恒成立,設,則
時,在(0,)上遞減速,
.
(2)若即有極大值又有極小值,則首先必需有兩個不同正要,,
即有兩個不同正根
令
∴當時,有兩個不同正根
不妨設,由知,
時,時,時,
∴當時,既有極大值又有極小值.www.ks5u.com
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com