⑶設(shè) .若數(shù)列的反數(shù)列為 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}、{bn}的各項都是正數(shù),Sn為數(shù)列{an}的前n項和,且對任意n∈N*,都有an2=4Sn-2an-1,b1=e,bn+1=bnλ,cn=an+1•lnbn(常數(shù)λ>0,lnbn是以為底數(shù)的自然對數(shù),e=2.71828…)
(1)求數(shù)列{an}、{bn}的通項公式;
(2)用反證法證明:當λ=4時,數(shù)列{cn}中的任何三項都不可能成等比數(shù)列;
(3)設(shè)數(shù)列{cn}的前n項和為Tn,試問:是否存在常數(shù)M,對一切n∈N*,(1-λ)Tn+λcn≥M恒成立?若存在,求出M的取值范圍;若不存在,請證明你的結(jié)論.

查看答案和解析>>

設(shè)數(shù)列{an}、{bn}的各項都是正數(shù),Sn為數(shù)列{an}的前n項和,且對任意n∈N*,都有,b1=e,,cn=an+1•lnbn(常數(shù)λ>0,lnbn是以為底數(shù)的自然對數(shù),e=2.71828…)
(1)求數(shù)列{an}、{bn}的通項公式;
(2)用反證法證明:當λ=4時,數(shù)列{cn}中的任何三項都不可能成等比數(shù)列;
(3)設(shè)數(shù)列{cn}的前n項和為Tn,試問:是否存在常數(shù)M,對一切n∈N*,(1-λ)Tn+λcn≥M恒成立?若存在,求出M的取值范圍;若不存在,請證明你的結(jié)論.

查看答案和解析>>

設(shè)函數(shù)f(x)=lg(x2axa-1),給出下列命題①f(x)有最小值;②當a=0時,f(x)的值域為R;③當a>0時,f(x)在[2,+∞]上有反函數(shù);④若f(x)在[2,+∞]上單增,則a≥-4.其中正確命題的序號為________

查看答案和解析>>

把正偶數(shù)列{2n}中的數(shù)按“上小下大,左小右大”的原則排成如圖“三角形”所示的數(shù)表,設(shè)aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個數(shù).
(1)若amn=2010,求m,n的值.
(2)已知函數(shù)f(x)的反函數(shù)為f-1(x)=n+125n•x3(x>0,n∈N*),若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為bn.①求數(shù)列{f(bn)}的前n項和Sn;②令Cn=
52n
5n-1
• f(bn) ,{Cn}
的前n項之積為Tn(n∈N*),求證:Tn
4
3
•n!

查看答案和解析>>

把正偶數(shù)列{2n}中的數(shù)按“上小下大,左小右大”的原則排成如圖“三角形”所示的數(shù)表,設(shè)aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個數(shù).
(1)若amn=2010,求m,n的值.
(2)已知函數(shù)f(x)的反函數(shù)為f-1(x)=n+125n•x3(x>0,n∈N*),若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為bn.①求數(shù)列{f(bn)}的前n項和Sn;②令的前n項之積為Tn(n∈N*),求證:

查看答案和解析>>

一選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

D

D

B

D

B

A

C

D

C

提示:10.解:數(shù)列、都是公差為1的等差數(shù)列,其首項分別為、,且,.設(shè)(),則 ,所以是等差數(shù)列,所以的前項和

11.由題,消去可得:,又由題有:,由以上條件可得:點的軌跡為如圖所示的線段,而表示點到坐標原點的距離的平方,所以

12.設(shè)點到左準線的距離為,則由雙曲線的第二定義有:,由題有,所以,又由第一定義在右支上),所以,,又由點在右支上,則,,解得:,而,所以

二.填空題

13.       14.          15.         16.  1

提示:15., 單調(diào)遞減,

16.如圖,設(shè)三棱錐得體積為,,當且僅當時三棱錐體積最大,過點,連接,由題可知平面,由三垂線定理可知為側(cè)面與底面成的角,所以,而用等面積法可知:,,所以,代入,得

三.解答題

17.解:(1)取OB中點E,連接ME,NE

…………………………………………2分

…………………………………4分

…………………………………………………………5分

(2)連接為異面直線所成的角(或其補角)…7分

由于,所以,,為等腰三角形,……………………………………………………9分

  (3)解法一:連接,設(shè)點B到平面OCD的距離為

,,,為等腰三角形,

的高為………11分

,又 

點B到平面OCD的距離為…………………………………………13分

解法二:點A和點B到平面OCD的距離相等,取的中點P連

接OP,過點作 于點Q,,又

,

線段AQ的長就是點A到平面OCD的距離, ………………………………12分

由題可知:,,在.……13分

18.解:中,

………………………………3分

   ……5分    ……………7分

(2)由余弦定理得,又由已知和(1)可知:

…………………………10分

………………………………13分

19.解:(Ⅰ)平面平面,…………2分

中,中點.……………4分

平面,平面平面.……………6分

(Ⅱ)如圖,作點,連接,

由已知得平面在面內(nèi)的射影.

由三垂線定理知,為二面角的平面角.……………9分

點,則,

.在中,.…………11分

中,,

即二面角.………………………………13分

20.解答:(1),又因為 按向量平移后得函數(shù)……..2

由g(x)圖像關(guān)于原點對稱得g(-x)=-g(x),即,

,…………………………………………………...4分

(舍)所以…….6分

(2)證明:因為

所以……………………………………8分

                 ……………………………………9分

   ……………………12分

所以     .……………………………………13分

21.解:(I)由已知可得

       ……2分    所以…3分  橢圓方程為……5分

   (II),且定值為    由(I),A2(2,0),B(0,1),且//A2B

       所以直線的斜率………………………………6分

       設(shè)直線的方程為

             解得:

   ………………………………………………8分

      

       ……………………9分

       又因為

      

      

      

          又

       是定值!12分

22.(1)為正整數(shù)),

所以數(shù)列的反數(shù)列為的通項為正整數(shù)).   …………3分

(2)對于(1)中,不等式化為.

設(shè),

∴數(shù)列單調(diào)遞增, 所以, ,要使不等式恒成立,只要.

,∴,又,

所以,使不等式對于任意正整數(shù)恒成立的的取值范圍是.…………7分(3)設(shè)公共項為正整數(shù).                    

①當為奇數(shù)時,.   ,

(表示的子數(shù)列),.所以的前項和.

② 當為偶數(shù)時,.,則,同樣有,.所以的前項和.                        …………12分

 

 

 


同步練習(xí)冊答案