(I)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)


(I)求橢圓的方程;
(II)求直線軸上截距的取值范圍;
(III)求面積的最大值

查看答案和解析>>

已知橢圓的方程是是橢圓的右頂點,M、N是橢圓上異于A的兩個不同點,且|AM|=|AN|.

   (I)求證M、N關(guān)于x軸對稱;

   (Ⅱ)求△AMN面積的最大值.

查看答案和解析>>

已知橢圓數(shù)學公式的右焦點為F,右準線為l,過F作直線交橢圓C于點P、Q兩點.
(I)設數(shù)學公式(O為坐標原點),求M的軌跡方程;
(II)設N是l上的任一點,求證:∠PNQ<90°.

查看答案和解析>>

已知橢圓的右焦點F(1,0),離心率為e.
(1)若,求橢圓方程;
(2)設直線y=kx(k>0)與橢圓相交于A,B兩點,M,N分別為線段AF,BF的中點,若坐標原點O在以MN為直徑的圓上.
(i)將k表示成e的函數(shù);
(ii)當時,求k的取值范圍.

查看答案和解析>>

已知橢圓的右焦點F(1,0),離心率為e.
(1)若,求橢圓方程;
(2)設直線y=kx(k>0)與橢圓相交于A,B兩點,M,N分別為線段AF,BF的中點,若坐標原點O在以MN為直徑的圓上.
(i)將k表示成e的函數(shù);
(ii)當時,求k的取值范圍.

查看答案和解析>>

 

 

一、選擇題:(1)-(12)CAADB  BAACD 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時,

時,

時,……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設,必須整改的煤礦數(shù)服從二項分布,從而的數(shù)學期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨立的,所以5家煤礦都不被關(guān)閉的概率是

從而至少關(guān)閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長為的正方形,側(cè)面是等腰三角形,,

且平面平面.……2分

(1)      學科網(wǎng)(Zxxk.Com)連結(jié),則的中點,

在△中,,………4分

   且平面平面,

 ∴∥平面  ………6分

(2) 因為平面⊥平面,

平面∩平面,

 又,所以,⊥平面

…………8分

,,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面,

平面,

所以  平面⊥平面  ………………12分

(20)解:設

              ………………6分

(2)由題意得上恒成立。

在[-1,1]上恒成立。

其圖象的對稱軸為直線,所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                            

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線相切,

   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵MP=MF2,

∴動點M到定直線的距離等于它到定點F1(1,0)的距離,

∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線  ………………6分

∴點M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設 

 

,化簡得

    ………………11分

當且僅當 時等號成立   …………13分

∴當的取值范圍是

……14分

 

 

 


同步練習冊答案