某校高三文科分為四個班.高三數(shù)學調(diào)研測試后.隨機地在各班抽取部分學生進行測試成績統(tǒng)計.各班被抽取的學生人數(shù)恰好成等差數(shù)列.人數(shù)最少的班被抽取了22人.抽取出來的所有學生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖所示.其中120~130 (包括120分但不包括130分)的頻率為0.05.此分數(shù)段的人數(shù)為5人. (1)各班被抽取的學生人數(shù)各為多少人? (2)在抽取的所有學生中.任取一名學生.求分數(shù)不小于90分的概率. 查看更多

 

題目列表(包括答案和解析)

 

(本小題滿分12分)

某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機調(diào)查了 50名學生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關(guān)系?

高中學生的作文水平與愛看課外書的2×2列聯(lián)表

 

愛看課外書

不愛看課外書

總計

作文水平好

 

 

 

作文水平一般

 [來源:學?。網(wǎng)Z。X。X。K]

 

 

總計

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.

參考公式:,其中.

參考數(shù)據(jù):

[來源:學*科*網(wǎng)]

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

 

 

查看答案和解析>>


(本小題滿分12分)
某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機調(diào)查了 50名學生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關(guān)系?
高中學生的作文水平與愛看課外書的2×2列聯(lián)表

 
愛看課外書
不愛看課外書
總計
作文水平
 
 
 
作文水平一般
 [來源:學?啤>W(wǎng)Z。X。X。K]
 
 
總計
 
 
 
(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.
參考公式:,其中.
參考數(shù)據(jù):
[來源:學*科*網(wǎng)]
0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

一.選擇題:DCBBA  DACCA

二.填空題:11.4x-3y-17 = 0  12.33  13.  14.  15.

三.解答題:

16.(1)解:由頻率分布條形圖知,抽取的學生總數(shù)為人                            4分
∵各班被抽取的學生人數(shù)成等差數(shù)列,設(shè)其公差為d
由4×22+6d = 100解得:d = 2                                                                              6分
∴各班被抽取的學生人數(shù)分別是22人,24人,26人,28人.                                 8分
(2)解:在抽取的學生中,任取一名學生,分數(shù)不小于90分的概率為
0.35+0.25+0.1+0.05=0.75                                                                                        12分

17.(1)解:∵,                                  2分
∴由得:,即              4分
又∵,∴                                                                                    6分

(2)解:                                    8分
得:,即          10分
兩邊平方得:,∴                                                                        12分

18.方法一

(1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角          6分
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小為45°              8分

(3)解:過點B作BH⊥AC,垂足為H,連結(jié)DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH為BD與平面ACD所成的角           10分
設(shè)AB = a,在Rt△BHD中,,
,                                                                                    10分
解得:,即線段AB的長度為1                                                                           12分

方法二
(1)同方法一                                                                                                               4分
(2)解:設(shè)以過B點且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標系,設(shè)AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
平面ABC的法向量 = (1,0,0)
設(shè)平面ABD的一個法向量為n = (x,y,z),則

n = (1,-1,0)                           6分

∴二面角C-AB-D的大小為45°                                                                           8分

(3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
設(shè)平面ACD的一個法向量是m = (x,y,z),則
∴取m = (0,a,1),由直線BD與平面ACD所成角為30°,故向量、m的夾角為60°
                                                                               10分
解得:,即線段AB的長度為1                                                                           12分

19.(1)解:設(shè)M (x,y),在△MAB中,| AB | = 2,

                        2分
因此點M的軌跡是以A、B為焦點的橢圓,a = 2,c = 1
∴曲線C的方程為.                                                                                4分

(2)解法一:設(shè)直線PQ方程為 (∈R)
得:                                                            6分
顯然,方程①的,設(shè)P(x1,y1),Q(x2,y2),則有

                                                           8分
,則t≥4,                10分
時有最大值9,故,即S≤3,∴△APQ的最大值為3               12分

解法二:設(shè)P(x1,y1),Q(x2,y2),則
當直線PQ的斜率不存在時,易知S = 3
設(shè)直線PQ方程為
  得:  ①                                         6分
顯然,方程①的△>0,則
                                    8分
                                10分
,則
,即S<3

∴△APQ的最大值為3                                                                                              12分

20.(1)解:
∵a<0,∴
故函數(shù)f (x)在區(qū)間(-∞,)、(-a,+∞)上單調(diào)遞增,在(,-a)上單調(diào)遞減    4分

(2)解:∵二次函數(shù)有最大值,∴a<0                                              5分
得:                                                                           6分
∵函數(shù)的圖象只有一個公共點,
,又a<0,∴-1≤a<0                                                 8分
,∴ (-1≤a<0)                                  10分

(3)解:當a < 0時,函數(shù)f (x)在區(qū)間(-∞,)、(-a,+∞)上單調(diào)遞增,
函數(shù)g (x)在區(qū)間(-∞,)上單調(diào)遞增

                                                                                            12分
當a > 0時,函數(shù)f (x)在區(qū)間(-∞,-a)、(,+∞)上單調(diào)遞增,
函數(shù)g (x)在區(qū)間(,+∞)上單調(diào)遞增

綜上所述,實數(shù)a的取值范圍是(-∞,]∪[3,+∞)                                        13分

21.(1)解:記
令x = 1得:
令x =-1得:
兩式相減得:,∴                                    4分
當n≥2時,
當n = 1時,,適合上式
                                                                                                6分

(2)解:
注意到                               8分
可改寫為:


                                                                                                               10分

           12分
                                                                                              14分

 

 

 


同步練習冊答案