題目列表(包括答案和解析)
1 |
4 |
1 |
2 |
(
| ||
(0.1-2)(a3b-3)
|
(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,證明在以MN為直徑的圓內(nèi).
(14分)已知函數(shù)
(Ⅰ)求的值域;
(Ⅱ)設(shè),函數(shù).若對(duì)任意,總存在,使,求實(shí)數(shù)的取值范圍.(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,
求證:為鈍角.
(14分)已知函數(shù),( x>0).
(I)當(dāng)0<a<b,且f(a)=f(b)時(shí),求證:ab>1;
(II)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.
(III)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)?[a,b]時(shí),值域?yàn)?[ma,mb]
(m≠0),求m的取值范圍.
一、選擇題:本大題共10小題,每小題5分,共50分.
題號(hào)
1
2
3
4
5
6
7
8
9
10
解答
B
D
A
B
D
B
D
C
D
C
二、填空題:本大題共7小題,每小題4分,共28分
11. 負(fù) 12.
13. 14.
15. 2 16. 2125
17.
三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.
18.解:(1)=,得:=,
即:, …………………………………………………………3分
又∵0<<,
∴=. …………………………………………………………5分
(2)直線方程為:.
,點(diǎn)到直線的距離為:.
∵
∴, …………………………………………………………9分
∴, …………………………………………………………11分
又∵0<<,
∴sin>0,cos<0; …………………………………………………………12分
∴
∴sin-cos= ……………14分
19.(Ⅰ)證明:連A1B,D
……2分
連結(jié),則
又,故D1E⊥平面AB
(Ⅱ)由(Ⅰ)知,E為棱BC的中點(diǎn).
………………9分
(Ⅲ). ………………………11分
在中,
………………………14分
20. (Ⅰ)證明:令
,總有恒成立.
,總有恒成立.
即
令
令
故函數(shù)是奇函數(shù). ………………………………………………5分
(Ⅱ) ,
.…………………………………………8分
……………………………………………………………………………10分
(Ⅲ)
……………………………………………………………………………15分
21.解:(Ⅰ)若為等腰直角
三角形,所以有OA=OF2,即b=c . ………2分
所以 …………5分
(Ⅱ)由題知
其中,.
由 …8分
將B點(diǎn)坐標(biāo)代入,
解得. 、佟 10分
又由 ② …12分
由①, ②解得,
所以橢圓方程為. ……………………………………………14分
22.解:
(Ⅰ)由題意,得
所以, …………………………………………5分
(Ⅱ)由(Ⅰ)知,,
-4
(-4,-2)
-2
1
+
0
-
0
+
極大值
極小值
函數(shù)值
-11
13
4
在[-4,1]上的最大值為13,最小值為-11。 …………………10分
(Ⅲ)
或.所以存在或,使. ……………15分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com