題目列表(包括答案和解析)
(本題滿分14分)已知拋物線
(1)△ABC的三個(gè)頂點(diǎn)在拋物線F上,記△ABC的三邊AB、BC、CA所在的直線的斜率分別為,若A的坐標(biāo)在原點(diǎn),求的值;
(2)請(qǐng)你給出一個(gè)以為頂點(diǎn)、其余各頂點(diǎn)均為拋物線F上的動(dòng)點(diǎn)的多邊形,寫(xiě)出各多邊形各邊所在的直線斜率之間的關(guān)系式,并說(shuō)明理由
一、選擇題:本大題共10小題,每小題5分,共50分.
題號(hào)
1
2
3
4
5
6
7
8
9
10
解答
B
D
A
B
D
B
D
C
D
C
二、填空題:本大題共7小題,每小題4分,共28分
11. 負(fù) 12.
13. 14.
15. 2 16. 2125
17.
三、解答題:本大題共5小題,共72分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
18.解:(1)=,得:=,
即:, …………………………………………………………3分
又∵0<<,
∴=. …………………………………………………………5分
(2)直線方程為:.
,點(diǎn)到直線的距離為:.
∵
∴, …………………………………………………………9分
∴, …………………………………………………………11分
又∵0<<,
∴sin>0,cos<0; …………………………………………………………12分
∴
∴sin-cos= ……………14分
19.(Ⅰ)證明:連A1B,D
……2分
連結(jié),則
又,故D1E⊥平面AB
(Ⅱ)由(Ⅰ)知,E為棱BC的中點(diǎn).
………………9分
(Ⅲ). ………………………11分
在中,
………………………14分
20. (Ⅰ)證明:令
,總有恒成立.
,總有恒成立.
即
令
令
故函數(shù)是奇函數(shù). ………………………………………………5分
(Ⅱ) ,
.…………………………………………8分
……………………………………………………………………………10分
(Ⅲ)
……………………………………………………………………………15分
21.解:(Ⅰ)若為等腰直角
三角形,所以有OA=OF2,即b=c . ………2分
所以 …………5分
(Ⅱ)由題知
其中,.
由 …8分
將B點(diǎn)坐標(biāo)代入,
解得. 、佟 10分
又由 ② …12分
由①, ②解得,
所以橢圓方程為. ……………………………………………14分
22.解:
(Ⅰ)由題意,得
所以, …………………………………………5分
(Ⅱ)由(Ⅰ)知,,
-4
(-4,-2)
-2
1
+
0
-
0
+
極大值
極小值
函數(shù)值
-11
13
4
在[-4,1]上的最大值為13,最小值為-11。 …………………10分
(Ⅲ)
或.所以存在或,使. ……………15分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com