10.若圓方程為:,圓方程為:. 查看更多

 

題目列表(包括答案和解析)

 若圓方程為:;圓方程為:

則方程表示的軌跡是(    )

A.線段的中垂線  

B.過兩圓內(nèi)公切線交點(diǎn)且垂直線段的直線

    C.兩圓公共弦所在的直線

    D.一條直線且該直線上的點(diǎn)到兩圓的切線長相等

 

查看答案和解析>>

方程 
x2
4-k
+
y2
k-1
=1
表示的曲線為C,給出下列四個(gè)命題:
①若1<k<4,則曲線C為橢圓;     
②若曲線C為雙曲線,則k<1或k>4;
③若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<k<
5
2
;   
④曲線C不可能表示圓的方程.
其中正確命題的序號(hào)是
 

查看答案和解析>>

方程
x2
4-t
+
y2
t-1
=1
表示的曲線為C,給出下列四個(gè)命題:
①曲線C不可能是圓;
②若曲線C為橢圓,則1<t<4;
③若曲線C為雙曲線,則t<1或t>4;
④若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<t<
5
2

其中正確命題序號(hào)是
 

查看答案和解析>>

方程
x2
4-t
+
y2
t-2
=1
所表示的曲線為C,有下列命題:
①若曲線C為橢圓,則2<t<4;②若曲線C為雙曲線,則t>4或t<2;
③曲線C不可能為圓;④若曲線C表示焦點(diǎn)在y上的雙曲線,則t>4;
以上命題正確的是
②④
②④
(填上所有正確命題的序號(hào)).

查看答案和解析>>

方程
x2
4-t
+
y2
t-1
=1
表示的曲線為C,給出下列四個(gè)命題:
①曲線C不可能是圓;
②若曲線C為橢圓,則1<t<4;
③若曲線C為雙曲線,則t<1或t>4;
④若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<t<
5
2

其中正確命題序號(hào)是______.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

解答

D

D

A

B

D

C

C

B

D

D

二、填空題:本大題共7小題,每小題4分,共28分

11.   負(fù)                                        12.            

13.    7                                        14.                            

15.   4010                                    16.                         

17.若他不放棄這5道題,則這5道題得分的期望為:                                                                           

三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

18.解:(Ⅰ)①,②,③,④處的數(shù)值分別為:3,0.025,0.100,1.…………4分

(Ⅱ)

            …………………………………………………………………………8分

(Ⅲ)(?)120分及以上的學(xué)生數(shù)為:(0.275+0.100+0.050)×5000=2125;

(?)平均分為:

(?)成績落在[126,150]中的概率為:

…………………………………………………………………………14分

19.解:(Ⅰ) 由三視圖可知,四棱錐的底面是邊長為1的正方形,

側(cè)棱底面,且.                           

即四棱錐的體積為.             ………………………………4分

(Ⅱ) 不論點(diǎn)在何位置,都有.                            

證明如下:連結(jié),∵是正方形,∴.          

底面,且平面,∴.        

又∵,∴平面.                        

∵不論點(diǎn)在何位置,都有平面

∴不論點(diǎn)在何位置,都有.        ………………………………8分

(Ⅲ) 解法1:在平面內(nèi)過點(diǎn),連結(jié).

,

∴Rt△≌Rt△,

從而△≌△,∴.

為二面角的平面角.                           

在Rt△中,,

,在△中,由余弦定理得

,             

,即二面角的大小為.  …………………14分

 

解法2:如圖,以點(diǎn)為原點(diǎn),所在的直線分別為軸建立空間直角

坐標(biāo)系. 則,從而

,,,.

設(shè)平面和平面的法向量分別為

,,

,取.   

,取

設(shè)二面角的平面角為,

,       

  ∴,即二面角的大小為.    …………………14分

20.解:(Ⅰ)令

、

由①、②知,,又上的單調(diào)函數(shù),

.     ………………………………………………………………………4分

(Ⅱ)

,

     …………………………………………………………………10分

(Ⅲ)令,則

         ……………………12分

對(duì)都成立

  

        …………………………………………………………………………………15分

21.解:(Ⅰ)設(shè)B(,),C(,),BC中點(diǎn)為(),F(2,0).

則有.

兩式作差有

.

設(shè)直線BC的斜率為,則有

.  (1)

因F2(2,0)為三角形重心,所以由,得

代入(1)得.

直線BC的方程為.      …………………………………………7分

 (Ⅱ)由AB⊥AC,得  (2)

設(shè)直線BC方程為,得

 

代入(2)式得,,

解得

故直線過定點(diǎn)(0,.        …………………………………………14分

22.解:(Ⅰ)

.

當(dāng)時(shí),

.從而有.…………………5分

(Ⅱ)設(shè)P,切線的傾斜角分別為,斜率分別為.則

由切線軸圍成一個(gè)等腰三角形,且均為正數(shù)知,該三角形為鈍角三角形,

 或   .又

.從而,

…………………………………………………………………………………10分

(Ⅲ)令

;

當(dāng)時(shí),即時(shí),曲線與曲線無公共點(diǎn),故方程無實(shí)數(shù)根;

當(dāng)時(shí),即時(shí),曲線與曲線有且僅有1個(gè)公共點(diǎn),故方程有且僅有1個(gè)實(shí)數(shù)根;

當(dāng)時(shí),即時(shí),曲線與曲線有2個(gè)交點(diǎn),故方程有2個(gè)實(shí)數(shù)根.         …………………………………………………………………15分

 

 

 


同步練習(xí)冊(cè)答案