22.設(shè)函數(shù)..且方程有實(shí)根. (1)證明:-3<c≤-1且b≥0, 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有實(shí)數(shù)根.
(1)證明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一個(gè)實(shí)數(shù)根,判斷f(m-4)的符號,并證明你的結(jié)論.

查看答案和解析>>

設(shè)函數(shù)f(x)=x-In(x+m),其中常數(shù)m為整數(shù).
(1)當(dāng)m為何值時(shí),f(x)≥0;
(2)定理:若函數(shù)g(x)在[a,b]上連續(xù),且g(a)與g(b)異號,則至少存在一點(diǎn)x0∈(a,b),使g(x0)=0.
試用上述定理證明:當(dāng)整數(shù)m>1時(shí),方程f(x)=0,在[e-m-m,e2m-m]內(nèi)有兩個(gè)實(shí)根.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax+
1
x+b
(a,b為常數(shù)),且方程f(x)=
3
2
x
有兩個(gè)實(shí)根為x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對稱圖形,并求其對稱中心.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有實(shí)數(shù)根.
(1)證明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一個(gè)實(shí)數(shù)根,判斷f(m-4)的符號,并證明你的結(jié)論.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有實(shí)數(shù)根.
(1)證明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一個(gè)實(shí)數(shù)根,判斷f(m-4)的符號,并證明你的結(jié)論.

查看答案和解析>>

1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

5.(文)D。ɡ恚〤 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

13.33 14.7 15.18

  16.只要寫出-4c,2ccc≠0)中一組即可,如-4,2,1等

  17.解析:

              

              

  18.解析:(1)由,成等差數(shù)列,得,

  若q=1,則,

  由≠0 得 ,與題意不符,所以q≠1.

  由,得

  整理,得,由q≠0,1,得

  (2)由(1)知:,

  ,所以,,成等差數(shù)列.

  19.解析:(1)記“摸出兩個(gè)球,兩球恰好顏色不同”為A,摸出兩個(gè)球共有方法種,

  其中,兩球一白一黑有種.

  ∴ 

 。2)法一:記摸出一球,放回后再摸出一個(gè)球“兩球恰好顏色不同”為B,摸出一球得白球的概率為,摸出一球得黑球的概率為

  ∴ PB)=0.4×0.6+0.6+×0.4=0.48

  法二:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”.

  ∴ 

  ∴ “有放回摸兩次,顏色不同”的概率為

  20.解析:(甲)(1)∵ △為以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形,∴ 

  ∵ 正三棱柱, ∴ 底面ABC

  ∴ 在底面內(nèi)的射影為CM,AMCM

  ∵ 底面ABC為邊長為a的正三角形, ∴ 點(diǎn)MBC邊的中點(diǎn).

 。2)過點(diǎn)CCH,由(1)知AMAMCM,

  ∴ AM⊥平面 ∵ CH在平面內(nèi), ∴ CHAM,

  ∴ CH⊥平面,由(1)知,,

  ∴ . ∴ 

  ∴ 點(diǎn)C到平面的距離為底面邊長為

 。3)過點(diǎn)CCII,連HI, ∵ CH⊥平面,

  ∴ HICI在平面內(nèi)的射影,

  ∴ HI,∠CIH是二面角的平面角.

  在直角三角形中,,

,

  ∴ ∠CIH=45°, ∴ 二面角的大小為45°

 。ㄒ遥┙猓海1)以B為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.

  ∵ AC2a,∠ABC=90°,

  ∴ 

  ∴ B(0,0,0),C(0,,0),A,0,0),

  ,0,3a),(0,,3a),(0,0,3a).

  ∴ ,,,

  ∴ ,,,

  ∴ ,, ∴ ,

  ∴ . 故BE所成的角為

 。2)假設(shè)存在點(diǎn)F,要使CF⊥平面,只要

  不妨設(shè)AFb,則F,0,b),,,,,0,,,, ∵ , ∴ 恒成立.

  ,

  故當(dāng)2a時(shí),平面

  21.解析:(1)法一:l

  解得,. ∵ 、、成等比數(shù)列,

  ∴ , ∴  ,,,

  ∴ ,. ∴ 

  法二:同上得,

  ∴ PAx軸.. ∴ 

 。2) ∴ 

  即 , ∵ ,

  ∴ ,即 . ∴ ,即 

  22.解析:(1). 又cb<1,

  故 方程fx)+1=0有實(shí)根,

  即有實(shí)根,故△=

  即

  又cb<1,得-3<c≤-1,由

  (2),

  ∴ cm<1 ∴ 

  ∴ . ∴ 的符號為正.

 


同步練習(xí)冊答案