6 查看更多

 

題目列表(包括答案和解析)

α=
π
6
”是“cos2α=
1
2
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

17、6個人坐在一排10個座位上,問
(1)空位不相鄰的坐法有多少種?
(2)4個空位只有3個相鄰的坐法有多少種?
(3)4個空位至多有2個相鄰的坐法有多少種?

查看答案和解析>>

6名志愿者隨機進入2個不同的全運場館參加接待工作,則每個場館至少有兩名志愿者的概率為( 。
A、
1
3
B、
1
12
C、
3
4
D、
25
32

查看答案和解析>>

4、6人排成一排,則甲不站在排頭的排法有
600
種.(用數(shù)字作答).

查看答案和解析>>

7、6、如果三棱錐S-ABC的底面是不等邊三角形,側(cè)面與底面所成的二面角都相等,且頂點S在底面的射影O在△ABC內(nèi),那么O是△ABC的( 。

查看答案和解析>>

1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

5.(文)D。ɡ恚〤 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

13.33 14.7 15.18

  16.只要寫出-4c,2ccc≠0)中一組即可,如-4,2,1等

  17.解析:

              

              

  18.解析:(1)由,成等差數(shù)列,得,

  若q=1,則,,

  由≠0 得 ,與題意不符,所以q≠1.

  由,得

  整理,得,由q≠0,1,得

 。2)由(1)知:,

  ,所以,成等差數(shù)列.

  19.解析:(1)記“摸出兩個球,兩球恰好顏色不同”為A,摸出兩個球共有方法種,

  其中,兩球一白一黑有種.

  ∴ 

  (2)法一:記摸出一球,放回后再摸出一個球“兩球恰好顏色不同”為B,摸出一球得白球的概率為,摸出一球得黑球的概率為,

  ∴ PB)=0.4×0.6+0.6+×0.4=0.48

  法二:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”.

  ∴ 

  ∴ “有放回摸兩次,顏色不同”的概率為

  20.解析:(甲)(1)∵ △為以點M為直角頂點的等腰直角三角形,∴ 

  ∵ 正三棱柱, ∴ 底面ABC

  ∴ 在底面內(nèi)的射影為CMAMCM

  ∵ 底面ABC為邊長為a的正三角形, ∴ 點MBC邊的中點.

  (2)過點CCH,由(1)知AMAMCM

  ∴ AM⊥平面 ∵ CH在平面內(nèi), ∴ CHAM,

  ∴ CH⊥平面,由(1)知,,

  ∴ . ∴ 

  ∴ 點C到平面的距離為底面邊長為

  (3)過點CCII,連HI, ∵ CH⊥平面,

  ∴ HICI在平面內(nèi)的射影,

  ∴ HI,∠CIH是二面角的平面角.

  在直角三角形中,,

  ∴ ∠CIH=45°, ∴ 二面角的大小為45°

  (乙)解:(1)以B為原點,建立如圖所示的空間直角坐標(biāo)系.

  ∵ AC2a,∠ABC=90°,

  ∴ 

  ∴ B(0,0,0),C(0,,0),A,0,0),

  ,0,3a),(0,,3a),(0,0,3a).

  ∴ ,,,,

  ∴ ,,,,,

  ∴ ,, ∴ ,

  ∴ . 故BE所成的角為

 。2)假設(shè)存在點F,要使CF⊥平面,只要

  不妨設(shè)AFb,則F,0,b),,,,0,,,,, ∵ , ∴ 恒成立.

  ,

  故當(dāng)2a時,平面

  21.解析:(1)法一:l

  解得,. ∵ 、、成等比數(shù)列,

  ∴  ∴ , ,,,

  ∴ ,. ∴ 

  法二:同上得

  ∴ PAx軸.. ∴ 

 。2) ∴ 

  即 , ∵ ,

  ∴ ,即 . ∴ ,即 

  22.解析:(1). 又cb<1,

  故 方程fx)+1=0有實根,

  即有實根,故△=

  即

  又cb<1,得-3<c≤-1,由

 。2)

  ∴ cm<1 ∴ 

  ∴ . ∴ 的符號為正.

 


同步練習(xí)冊答案