若.試求的值. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

(理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

(理)設(shè)α∈(0,π),函數(shù)f(x)的定義域為[0,1],且f(0)=0,f(1)=1,對定義域內(nèi)任意的x,y,滿足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)試用α表示f(
1
2
),并在f(
1
2
)時求出α的值;
(2)試用α表示f(
1
4
),并求出α的值;
(3)n∈N時,an=
1
2n
,求f(an),并猜測x∈[0,1]時,f(x)的表達式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若點A、B、C不能構(gòu)成三角形,求實數(shù)m應(yīng)滿足的條件.
(2)若△ABC為直角三角形,求m的取值范圍.

查看答案和解析>>

(理)設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),k(x)=
1x
 (x<0)
是否為各自定義域上的下凸函數(shù),并說明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

(理)已知數(shù)列{an}滿足a1=2,前n項和為Snan+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿足bn=a2n+a2n+1(n≥1),試求數(shù)列{bn}前3項的和T3;
(2)若數(shù)列{cn}滿足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說明理由;
(3)當(dāng)p=
1
2
時,對任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范圍.

查看答案和解析>>

1.(理)A。ㄎ模〣 2.(理)B。ㄎ模〣 3.B 4.A 5.D 

6.(理)B。ㄎ模〥 7.B 8.(理)C。ㄎ模〥 9.D 10.D 11.C

12.(理)A (文)A 13.1或0 14. 15.10080° 16.

  17.解析:(1)的分布如下

0

1

2

P

 。2)由(1)知

  ∴ 

  18.解析:(1)以點為坐標(biāo)原點,所在直線為x軸,所在直線為z軸,建立空間直角坐標(biāo)系,設(shè),a(0,+∞).

  ∵ 三棱柱為正三棱柱,則,B,C的坐標(biāo)分別為:(b,0,0),,,,,(0,0,a). ∴  ,,,

  (2)在(1)條件下,不妨設(shè)b=2,則,

  又A,MN坐標(biāo)分別為(b,0,a),(,,0),(,,a).

  ∴ ,.  ∴ 

  同理 

  ∴ △與△均為以為底邊的等腰三角形,取中點為P,則,為二面角的平面角,而點P坐標(biāo)為(1,0,),

  ∴ ,,. 同理 ,

  ∴ 

 ∴ ∠NPM=90°二面角的大小等于90°.

  19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

  y=滅火勞務(wù)津貼+車輛、器械裝備費+森林損失費

   =125tx+100x+60(500+100t

   =

   =

   =

  

  當(dāng)且僅當(dāng),即x=27時,y有最小值36450.

  故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

  20.解析:(1)當(dāng)A、B、C三點不共線時,由三角形中線性質(zhì)知

;

  當(dāng)A,B,C三點共線時,由在線段BC外側(cè),由x=5,因此,當(dāng)x=1或x=5時,有

  同時也滿足:.當(dāng)A、BC不共線時,

定義域為[1,5].

  (2)(理)∵ . ∴ dyx-1=

  令 tx-3,由,

  兩邊對t求導(dǎo)得:關(guān)于t在[-2,2]上單調(diào)增.

  ∴ 當(dāng)t=2時,=3,此時x=1. 當(dāng)t=2時,=7.此時x=5.故d的取值范圍為[3,7].

  (文)由,,

  ∴ 當(dāng)x=3時,.當(dāng)x=1或5時,

  ∴ y的取值范圍為[,3].

  21.解析:(1)令,令y=-x,則

在(-1,1)上是奇函數(shù).

 。2)設(shè),則,而,.即 當(dāng)時,

  ∴ fx)在(0,1)上單調(diào)遞減.

 。3)(理)由于

  ,,

  ∴ 

  22.解析:(理)由平面,連AH并延長并BCM

  則 由H為△ABC的垂心. ∴ AMBC

  于是 BC⊥平面OAHOHBC

  同理可證:平面ABC

  又 ,,是空間中三個不共面的向量,由向量基本定理知,存在三個實數(shù),使得abc

  由 0bc, 同理

  ∴ .           、

  又 AHOH,

  ∴ =0

                     ②

  聯(lián)立①及②,得 、

  又由①,得 ,,代入③得:

  ,,

  其中,于是

 。ㄎ模1)聯(lián)立方程ax+1=y,消去y得:  (*)

  又直線與雙曲線相交于A,B兩點, ∴

  又依題 OAOB,令A,B兩點坐標(biāo)分別為(),(,),則 

  且 

,而由方程(*)知:,代入上式得.滿足條件.

 。2)假設(shè)這樣的點A,B存在,則lyax+1斜率a=-2.又AB中點,上,則,

  又 ,

  代入上式知 這與矛盾.

  故這樣的實數(shù)a不存在.

 


同步練習(xí)冊答案