(1)求的函數(shù)表達(dá)式及函數(shù)的定義域, 查看更多

 

題目列表(包括答案和解析)

設(shè),函數(shù)的定義域為,且

,對定義域內(nèi)任意的,滿足,求:

(1)的值;

(2)函數(shù)的單調(diào)遞增區(qū)間;

(3)時,,求,并猜測時,的表達(dá)式.

查看答案和解析>>

精英家教網(wǎng)定義域為R的函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分圖象如圖所示,求:
(1)f(x)的表達(dá)式;
(2)f(x)的單調(diào)增區(qū)間;
(3)f(x)的對稱軸和對稱中心;
(4)f(x)的最小值以及取得最小值時的x的集合.

查看答案和解析>>

已知定義域為R(實數(shù)集)的函數(shù),f(x)中,f(0)=1
且當(dāng)n-1≤x<n(n∈Z)時,f(x)=(x-n)•f(n-1)+f(n)
(Ⅰ)求f(2)的值及當(dāng)x∈[3,4)時,f(x)的表達(dá)式;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性,并說明理由;
(Ⅲ)“定義:設(shè)g(x)為定義在D上的函數(shù),若存在正數(shù)M,對任意x∈D都有|g(x)|≤M,則稱函數(shù)g(x)為D上有界函數(shù);否則,稱函數(shù)g(x)為D上無界函數(shù).”試證明f(x)為R上無界函數(shù).

查看答案和解析>>

設(shè)函數(shù)y=f(x),且lg(lgy)=lg3x+lg(3-x).

(1)求f(x)的表達(dá)式及定義域;

(2)求f(x)的值域.

查看答案和解析>>

已知定義域為R(實數(shù)集)的函數(shù),f(x)中,f(0)=1
且當(dāng)n-1≤x<n(n∈Z)時,f(x)=(x-n)•f(n-1)+f(n)
(Ⅰ)求f(2)的值及當(dāng)x∈[3,4)時,f(x)的表達(dá)式;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性,并說明理由;
(Ⅲ)“定義:設(shè)g(x)為定義在D上的函數(shù),若存在正數(shù)M,對任意x∈D都有|g(x)|≤M,則稱函數(shù)g(x)為D上有界函數(shù);否則,稱函數(shù)g(x)為D上無界函數(shù).”試證明f(x)為R上無界函數(shù).

查看答案和解析>>

1.(理)A。ㄎ模〣 2.(理)B (文)B 3.B 4.A 5.D 

6.(理)B。ㄎ模〥 7.B 8.(理)C。ㄎ模〥 9.D 10.D 11.C

12.(理)A。ㄎ模〢 13.1或0 14. 15.10080° 16.

  17.解析:(1)的分布如下

0

1

2

P

  (2)由(1)知

  ∴ 

  18.解析:(1)以點為坐標(biāo)原點,所在直線為x軸,所在直線為z軸,建立空間直角坐標(biāo)系,設(shè),a,(0,+∞).

  ∵ 三棱柱為正三棱柱,則,B,C的坐標(biāo)分別為:(b,0,0),,,,,(0,0,a). ∴  ,,,,,

 。2)在(1)條件下,不妨設(shè)b=2,則,

  又A,M,N坐標(biāo)分別為(b,0,a),(,,0),(,,a).

  ∴ ,.  ∴ 

  同理 

  ∴ △與△均為以為底邊的等腰三角形,取中點為P,則,為二面角的平面角,而點P坐標(biāo)為(1,0,),

  ∴ ,,. 同理 ,

  ∴ 

 ∴ ∠NPM=90°二面角的大小等于90°.

  19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

  y=滅火勞務(wù)津貼+車輛、器械裝備費(fèi)+森林損失費(fèi)

   =125tx+100x+60(500+100t

   =

   =

   =

  

  當(dāng)且僅當(dāng),即x=27時,y有最小值36450.

  故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

  20.解析:(1)當(dāng)AB、C三點不共線時,由三角形中線性質(zhì)知

;

  當(dāng)A,B,C三點共線時,由在線段BC外側(cè),由x=5,因此,當(dāng)x=1或x=5時,有,

  同時也滿足:.當(dāng)A、B、C不共線時,

定義域為[1,5].

  (2)(理)∵ . ∴ dyx-1=

  令 tx-3,由,,

  兩邊對t求導(dǎo)得:關(guān)于t在[-2,2]上單調(diào)增.

  ∴ 當(dāng)t=2時,=3,此時x=1. 當(dāng)t=2時,=7.此時x=5.故d的取值范圍為[3,7].

 。ㄎ模┯,

  ∴ 當(dāng)x=3時,.當(dāng)x=1或5時,

  ∴ y的取值范圍為[,3].

  21.解析:(1)令,令y=-x,則

在(-1,1)上是奇函數(shù).

  (2)設(shè),則,而,.即 當(dāng)時,

  ∴ fx)在(0,1)上單調(diào)遞減.

 。3)(理)由于,

  ,,

  ∴ 

  22.解析:(理)由平面,連AH并延長并BCM

  則 由H為△ABC的垂心. ∴ AMBC

  于是 BC⊥平面OAHOHBC

  同理可證:平面ABC

  又 ,是空間中三個不共面的向量,由向量基本定理知,存在三個實數(shù),,使得abc

  由 0bc, 同理

  ∴ .           、

  又 AHOH,

  ∴ =0

                     ②

  聯(lián)立①及②,得 、

  又由①,得 ,,,代入③得:

  ,,

  其中,于是

  (文)(1)聯(lián)立方程ax+1=y,消去y得:  (*)

  又直線與雙曲線相交于AB兩點, ∴

  又依題 OAOB,令A,B兩點坐標(biāo)分別為(),(,),則 

  且 

,而由方程(*)知:代入上式得.滿足條件.

 。2)假設(shè)這樣的點AB存在,則lyax+1斜率a=-2.又AB中點,上,則,

  又 ,

  代入上式知 這與矛盾.

  故這樣的實數(shù)a不存在.

 


同步練習(xí)冊答案