題目列表(包括答案和解析)
設(shè),函數(shù)的定義域為,且
,對定義域內(nèi)任意的,滿足,求:
(1)及的值;
(2)函數(shù)的單調(diào)遞增區(qū)間;
(3)時,,求,并猜測時,的表達(dá)式.
π | 2 |
設(shè)函數(shù)y=f(x),且lg(lgy)=lg3x+lg(3-x).
(1)求f(x)的表達(dá)式及定義域;
(2)求f(x)的值域.
1.(理)A。ㄎ模〣 2.(理)B (文)B 3.B 4.A 5.D
6.(理)B。ㄎ模〥 7.B 8.(理)C。ㄎ模〥 9.D 10.D 11.C
12.(理)A。ㄎ模〢 13.1或0 14. 15.10080° 16.
17.解析:(1)的分布如下
0
1
2
P
(2)由(1)知.
∴ .
18.解析:(1)以點為坐標(biāo)原點,所在直線為x軸,所在直線為z軸,建立空間直角坐標(biāo)系,設(shè),(a,(0,+∞).
∵ 三棱柱為正三棱柱,則,B,,C的坐標(biāo)分別為:(b,0,0),,,,,,,(0,0,a). ∴ ,,,,,.
。2)在(1)條件下,不妨設(shè)b=2,則,
又A,M,N坐標(biāo)分別為(b,0,a),(,,0),(,,a).
∴ ,. ∴
同理 .
∴ △與△均為以為底邊的等腰三角形,取中點為P,則,為二面角的平面角,而點P坐標(biāo)為(1,0,),
∴ ,,. 同理 ,,.
∴ .
∴ ∠NPM=90°二面角的大小等于90°.
19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則
y=滅火勞務(wù)津貼+車輛、器械裝備費(fèi)+森林損失費(fèi)
=125tx+100x+60(500+100t)
=
=
=
當(dāng)且僅當(dāng),即x=27時,y有最小值36450.
故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.
20.解析:(1)當(dāng)A、B、C三點不共線時,由三角形中線性質(zhì)知
;
當(dāng)A,B,C三點共線時,由在線段BC外側(cè),由或x=5,因此,當(dāng)x=1或x=5時,有,
同時也滿足:.當(dāng)A、B、C不共線時,
定義域為[1,5].
(2)(理)∵ . ∴ d=y+x-1=.
令 t=x-3,由,,
兩邊對t求導(dǎo)得:關(guān)于t在[-2,2]上單調(diào)增.
∴ 當(dāng)t=2時,=3,此時x=1. 當(dāng)t=2時,=7.此時x=5.故d的取值范圍為[3,7].
。ㄎ模┯且,,
∴ 當(dāng)x=3時,.當(dāng)x=1或5時,.
∴ y的取值范圍為[,3].
21.解析:(1)令,令y=-x,則
在(-1,1)上是奇函數(shù).
(2)設(shè),則,而,.即 當(dāng)時,
.
∴ f(x)在(0,1)上單調(diào)遞減.
。3)(理)由于,
,,
∴ .
22.解析:(理)由平面,連AH并延長并BC于M.
則 由H為△ABC的垂心. ∴ AM⊥BC.
于是 BC⊥平面OAHOH⊥BC.
同理可證:平面ABC.
又 ,,是空間中三個不共面的向量,由向量基本定理知,存在三個實數(shù),,使得=a+b+c.
由 且==0b=c, 同理.
∴ . 、
又 AH⊥OH,
∴ =0
②
聯(lián)立①及②,得 、
又由①,得 ,,,代入③得:
,,,
其中,于是.
(文)(1)聯(lián)立方程ax+1=y與,消去y得: (*)
又直線與雙曲線相交于A,B兩點, ∴.
又依題 OA⊥OB,令A,B兩點坐標(biāo)分別為(,),(,),則 .
且
,而由方程(*)知:,代入上式得.滿足條件.
。2)假設(shè)這樣的點A,B存在,則l:y=ax+1斜率a=-2.又AB中點,在上,則,
又 ,
代入上式知 這與矛盾.
故這樣的實數(shù)a不存在.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com