C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點(diǎn)的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點(diǎn)的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

1.(理)A。ㄎ模〣 2.(理)B。ㄎ模〣 3.B 4.A 5.D 

6.(理)B (文)D 7.B 8.(理)C。ㄎ模〥 9.D 10.D 11.C

12.(理)A。ㄎ模〢 13.1或0 14. 15.10080° 16.

  17.解析:(1)的分布如下

0

1

2

P

 。2)由(1)知

  ∴ 

  18.解析:(1)以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為z軸,建立空間直角坐標(biāo)系,設(shè),a,(0,+∞).

  ∵ 三棱柱為正三棱柱,則,B,,C的坐標(biāo)分別為:(b,0,0),,,,,,(0,0,a). ∴  ,,,,

 。2)在(1)條件下,不妨設(shè)b=2,則

  又A,M,N坐標(biāo)分別為(b,0,a),(,,0),(,a).

  ∴ .  ∴ 

  同理 

  ∴ △與△均為以為底邊的等腰三角形,取中點(diǎn)為P,則為二面角的平面角,而點(diǎn)P坐標(biāo)為(1,0,),

  ∴ ,,. 同理 ,,

  ∴ 

 ∴ ∠NPM=90°二面角的大小等于90°.

  19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

  y=滅火勞務(wù)津貼+車輛、器械裝備費(fèi)+森林損失費(fèi)

   =125tx+100x+60(500+100t

   =

   =

   =

  

  當(dāng)且僅當(dāng),即x=27時,y有最小值36450.

  故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

  20.解析:(1)當(dāng)AB、C三點(diǎn)不共線時,由三角形中線性質(zhì)知

;

  當(dāng)AB,C三點(diǎn)共線時,由在線段BC外側(cè),由x=5,因此,當(dāng)x=1或x=5時,有,

  同時也滿足:.當(dāng)A、BC不共線時,

定義域?yàn)閇1,5].

 。2)(理)∵ . ∴ dyx-1=

  令 tx-3,由,

  兩邊對t求導(dǎo)得:關(guān)于t在[-2,2]上單調(diào)增.

  ∴ 當(dāng)t=2時,=3,此時x=1. 當(dāng)t=2時,=7.此時x=5.故d的取值范圍為[3,7].

  (文)由,

  ∴ 當(dāng)x=3時,.當(dāng)x=1或5時,

  ∴ y的取值范圍為[,3].

  21.解析:(1)令,令y=-x,則

在(-1,1)上是奇函數(shù).

 。2)設(shè),則,而,.即 當(dāng)時,

  ∴ fx)在(0,1)上單調(diào)遞減.

 。3)(理)由于

  ,,

  ∴ 

  22.解析:(理)由平面,連AH并延長并BCM

  則 由H為△ABC的垂心. ∴ AMBC

  于是 BC⊥平面OAHOHBC

  同理可證:平面ABC

  又 ,是空間中三個不共面的向量,由向量基本定理知,存在三個實(shí)數(shù),,使得abc

  由 0bc, 同理

  ∴ .           、

  又 AHOH,

  ∴ =0

                     ②

  聯(lián)立①及②,得  ③

  又由①,得 ,,,代入③得:

  ,,

  其中,于是

 。ㄎ模1)聯(lián)立方程ax+1=y,消去y得:  (*)

  又直線與雙曲線相交于A,B兩點(diǎn), ∴

  又依題 OAOB,令AB兩點(diǎn)坐標(biāo)分別為(,),(,),則 

  且 

,而由方程(*)知:代入上式得.滿足條件.

 。2)假設(shè)這樣的點(diǎn)AB存在,則lyax+1斜率a=-2.又AB中點(diǎn)上,則

  又 ,

  代入上式知 這與矛盾.

  故這樣的實(shí)數(shù)a不存在.

 


同步練習(xí)冊答案