(理)若點E滿足.問是否存在不平行AB的直線l與橢圓C交于M.N兩點且.若存在.求出直線l與AB夾角的范圍.若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖,橢圓的中心為原點O,離心率e=,一條準線的方程為x=2
(Ⅰ)求該橢圓的標準方程.
(Ⅱ)設動點P滿足,其中M,N是橢圓上的點.直線OM與ON的斜率之積為﹣.問:是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標;若不存在,說明理由.

查看答案和解析>>

如圖,橢圓的中心為原點O,離心率e=,一條準線的方程為x=2
(Ⅰ)求該橢圓的標準方程.
(Ⅱ)設動點P滿足,其中M,N是橢圓上的點.直線OM與ON的斜率之積為-
問:是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標;若不存在,說明理由.

查看答案和解析>>

已知橢圓的一個焦點,對應的準線方程為,且離心率e滿足,e,成等比數(shù)列.
(1)求橢圓的方程;
(2)試問是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線平分?若存在,求出l的傾斜角的取值范圍;若不存在,請說明理由.

查看答案和解析>>

如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓G以A、B為焦點且經過點D.
(Ⅰ)建立適當坐標系,求橢圓G的方程;
(Ⅱ)若點E滿足=,問是否存在不平行AB的直線l與橢圓G交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說明理由.

查看答案和解析>>

如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓G以A、B為焦點且經過點D.
(Ⅰ)建立適當坐標系,求橢圓G的方程;
(Ⅱ)若點E滿足=,問是否存在不平行AB的直線l與橢圓G交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說明理由.

查看答案和解析>>

1.B 2.(文)B。ɡ恚〥 3.C 4.B 5.C 6.A 7.(文)A (理)D 

8.D 9.B 10.D 11.A 12.B 13.2

  14.(0,)  15.  16.

  17.解析:恰有3個紅球的概率

  有4個紅球的概率

  至少有3個紅球的概率

  18.解析:∵ 

  (1)最小正周期 

 。2)

  ∴ 時 ,∴ ,  ∴ a=1.

  19.解析:(甲)(1)以DADC、DP所在直線分別為x軸、y軸、z軸建立空間坐標系(2,0,0),B(2,2,0),C(0,2,0)設P(0,0,2m(1,1,m), ∴ (-1,1,m),=(0,0,2m

  ∴ ,,

  ∴ 點E坐標是(1,1,1)

  (2)∵ 平面PAD, ∴ 可設Fx,0,z=(x-1,-1,z-1)

  ∵ EF⊥平面PCB ∴ ,-1,2,0,

  ∵  ∴ ,-1,0,2,-2

  ∴ 點F的坐標是(1,0,0),即點FAD的中點.

  (乙)(1)證明:∵ 是菱形,∠=60°是正三角形

  又∵ 

  

  (2) ∴ ∠BEM為所求二面角的平面角

  △中,60°,Rt△中,60°

  ∴ , ∴ 所求二面角的正切值是2;

 。3)

  20.解析:(1)設fx)圖像上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在hx)圖像上

  ∴ , ∴ ,即 

  (2)(文):,即在(0,上遞減, ∴ a≤-4

 。ɡ恚, ∵  在(0,上遞減,

  ∴ (0,時恒成立.

  即 (0,時恒成立. ∵ (0,時, ∴

  21.解析:(1)2007年A型車價為32+32×25%=40(萬元)

  設B型車每年下降d萬元,2002,2003……2007年B型車價格為:(公差為-d

  ,…… ∴ ≤40×90% ∴ 46-5d≤36 d≥2

  故每年至少下降2萬元

  (2)2007年到期時共有錢

  >33(1+0.09+0.00324+……)=36.07692>36(萬元)

  故5年到期后這筆錢夠買一輛降價后的B型車

  22.解析:(1)如圖,以AB所在直線為x軸,AB中垂線為y軸建立直角坐標系,A(-1,0),B(1,0)

  設橢圓方程為:

  令 ∴

  ∴ 橢圓C的方程是:

 。2)(文)lAB時不符合,

  ∴ 設l

  設M,),N,

  ∵   ∴ ,即,

  ∴ l,即 經驗證:l與橢圓相交,

  ∴ 存在,lAB的夾角是

 。ɡ恚,lAB時不符,

  設lykxmk≠0)

  由 

  MN存在D

  設M,),N,),MN的中點F,

  ∴ ,

  

  ∴   ∴ 

  ∴   ∴ 

  ∴ lAB的夾角的范圍是,

 


同步練習冊答案