(3)已知兩個圓:①與②.則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍為圓和的情況下加以推廣.即要求得到一個更一般的命題.而已知命題應(yīng)成為所推廣命題的一個特例.推廣的命題為 . 本小題主要考查圓的方程.圓的公共弦方程的概念.考查抽象思維能力和歸納推廣的能力. 查看更多

 

題目列表(包括答案和解析)

已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特別,推廣的命題為:         .

查看答案和解析>>

已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特別,推廣的命題為:         .

查看答案和解析>>

11.已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例,推廣的命題為:______________.

查看答案和解析>>

11.已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例,推廣的命題為:                                      .

查看答案和解析>>

已知兩個圓:x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為推廣命題的一個特例.推廣的命題為:________.

查看答案和解析>>


同步練習(xí)冊答案